Detectors for Synchrotron Radiation

Rob Lewis
Monash University

Factors Limiting Science

- Detectors are an oftneglected but crucial part of an experiment
- They often limit the science

X-rays and their Interaction with Matter

Scientist's View of Detector

The Truth!

Detection Mechanisms

- There are many means of detection. All require the interaction of photons with matter
- Examples include
 - ♦ Gas ionisation
 - Photons produce electrons and ions which are then detected
 - E.g. Ion chambers, proportional counters
 - Photoelectric effect
 - Photons eject electrons from a solid creating a current which is measured
 - E.g.. Beam monitors
 - Generation of electron hole pairs
 - Photons produce electrons and holes in a semiconductor which are then detected
 - E.g.. CCDz
 - ♦ Fluorescence, scintillation and F centres
 - Photons produce prompt fluorescence or F centres
 - E.g. Image plates and Scintillation counters
 - ♦ Chemical effect
 - Photons create a chemical change such as dissociating Ag halide
 - E.g. Film

Albert Einstein

Germany and Switzerland Kaiser-Wilhelm-Institut (now Max-Planck-Institut) für Physik Berlin-Dahlem, Germany 1879 - 1955

Nobel prize in physics 1921

"for his services to Theoretical Physics, and especially for his discovery of the law of the photoelectric effect"

Photoelectric Effect

Arthur Holly Compton

Nobel prize in physics 1927

"for his discovery of the effect named after him"

University of Chicago Chicago, IL, USA 1892 - 1962

Compton Effect

What are we trying to do?

- We are usually trying to determine the effect of the sample on the beam
- i.e. we are looking for a DIFFERENCE

- We therefore need to measure the beam both before and after the sample
- There are many means of detection. All require the interaction of photons with matter
- How can we do that without the detector changing the beam?

An Example Detector

Echidna

Ionisation Chamber

- Very simple device
- Approximately 1 e⁻ ion pair per 30eV deposited
- Important that recombination low as possible
 - Higher voltages required at higher rates since more carriers
 - Diffusion losses caused by separation of carriers minimised by higher voltages
- Ion chambers are sensitive pressure and temperature

Operation regions of gas filled detectors

n is number of charges

x is distance

α is the first Townsend coefficient

$$\frac{dn}{n} = \alpha dx$$
$$n(x) = n(0)e^{\alpha x}$$

Field Variation

Avalanche & Proportional Counter

Microstrip Variants

If there is sufficient signal produced by the interaction of a photon or a particle in the detector then it is possible to operate the detector as a counter

■ Usually this is not true and we have to accumulate many photons/particles before the signal becomes measurable

Integrating Detectors

Mode

 Measures deposited energy at end of integration period

Characteristics

- High input flux capability
- Read noise dominates at low signal ("fog level")
- Dead time between frames
- ♦ 2×20 keV phts = 1×40 keV photon i.e. Cannot perform simultaneous spectroscopy and positioning
- Examples: Image plates, CCDs

Photon Counting Detectors

Mode

 Detects every photon as it arrives. Only active pixels read

Characteristics

- Quantum limited, Detector noise often negligible
- No dead time between frames
- Can measure position and energy simultaneously
- ♦ Limited input flux capability
- Examples: Prop counters, Scintillators

Dark Signals & Fog

Types of Detectors

Crimson Rosella and King Parrot

X-ray Film

- Active Ingredient
 - Small crystals of silver halide $\sim 1.0 1.5 \mu m$
 - ♦ Typically 90-99% silver bromide and 1-10% silver iodide.
 - ♦ Suspended in the gelatin of the film emulsion.
 - Crystals have a cubic lattice with many point defects and free silver ions

Exposure

- A photon liberates an electron from a bromide ion
- ♦ The electron travels until trapped at a defect
- A free silver ion is attracted to the negative charge and combines (is reduced) to form an atom of metallic silver (which is optically black).
- ♦ The single silver atom acts as an electron trap for another electron which then attracts another atom of silver which is then reduced to metallic silver. This process continues while the exposure to light continues.
- Conventional film is usually coated with emulsion on only one side, radiographic film is usually double coated (on each side of the base) to be used with intensifying screens.

Intensifying Screens

- An intensifying screen converts x-ray energy into light energy
- X-rays are absorbed by the phosphor
- The phosphor becomes excited & fluoresces emitting UV and/or visible light
- For every x-ray photon absorbed, hundreds of light photons are emitted
- The use of intensifying screens inevitably means that certain degree of unsharpness will be introduced into the image in comparison to non-screen film

Charge Coupled Device

CCD Readout

CCD Readout

- Charge is moved from pixel to pixel by clocking
- Each pixel has a limited capacitance (well depth) typically 10^4 - 10^5 e⁻
- This limits dynamic range for direct detection
 - 10 keV photon creates $\sim 3000 \text{e}^{-1}$ so saturation = ~ 10 photons
- Speed of clocking is restricted by line capacitance and charge transfer efficiency
 - ♦ Size of CCD restricted by this
- Noise can be reduced by cooling
- Amplifier usually on chip
 - Heats up that part of chip

CCDs

Although sizes > 50mm are available, the read speed is slow to preserve low noise and cte (line capacitance becomes very high) Shutter required

CCD detectors

TV detector with IIT

Computed Radiography-Image Plate

X-Y Flat bed Scanner

Distributed Light Collection

TFT Flat panel Detector

a-Si:H TFT arrays

a-Si:H Array dpiX - Flashscan 30

PILATUS 6M Detector

PILATUS 6M Detector

- Sensor $5 \times 12 = 60 \text{ modules}$
 - Reverse-biased silicon diode array
 - Thickness 320 μm
 - Pixel size 172 x 172 μm²
- = 2463 x 2527 = 6,224,001 pixels
- Area 431 x 448 mm²
- Intermodule gap x: 7 pixels, y: 17 pixels, 8.4% of total area
- Dynamic range 20 bits (1:1,048,576)
- Counting rate per pixel $> 2 \times 10^6 \text{ X-ray/s}$
- Energy range 3 30 keV
- Quantum efficiency (calculated)
 - ♦ 3 keV: 80% 8 keV: 99% 15 keV: 55%
- Energy resolution 500 eV
- Adjustable threshold range 2 20 keV Threshold dispersion 50 eV
- Readout time 3.6 ms
- Framing rate 12 Hz
- Point-spread function 1 pixel

PILATUS 6M Detector

X-ray diffraction image recorded from a ferritin crystal (energy=16 keV, distance = 204 mm).

Spectroscopic Detectors

Rainbow Lorikeets

Electron multipliers & Scintillators

Channeltron is a similar with distributed dynode

Micro-channel plates are mutlichannel channeltrons with each channel being an electron multiplier.

Multi Channel Spectoscopic Detectors

Canberra Ultra-LEGe detector

WRULEAD (Windowless, Retractable, Ultra Low Energy Array Detector) works down to 300eV

Multichannel devices up to 30 channels at 3×10^5 cts s⁻¹ channel-1 have been built

SPring-8 128 channel Ge strip

Ge

♦ 55.5×50.5×6mm

Strips

♦ Number 128

♦ Width 300μm

Interstrip 50μm

♦ Length 5mm

Readout

♦ Single channel 100ns

♦ 32 channels 3.2ms

Max expected count rate

♦ 14kcps

Spectral Resolution

- Average number of carriers, N = E/w where w is energy to create electron hole/ion pair
- Poisson statistics $\sigma = 1/\sqrt{N}$

$$= (E/w)^{-1/2} = (w/E)^{1/2}$$

 \triangle E/E fwhm

$$= 2.355\sigma$$

$$= 2.355 (w/E)^{1/2}$$

- For Ge, w= 3eV so at $10\text{keV} \Delta E/E \sim 4\%$
- For NaI, w = 30eV so at $10keV \Delta E/E \sim 13\%$

Fano Factor

- If all energy from photon or particle were converted into carriers there would be no variance
- Poisson statistics assume only a small fraction of energy goes into charge creation
- Reality is somewhere in between so we introduce Fano factor F
- Fano factor is defined as $F = \frac{\sigma}{\mu}$ where σ^2 is the variance and μ is the mean number of carriers
- For a Poisson process, the variance equals the mean, so F = 1
- Examples

♦ Si: 0.115 Ge: 0.13 GaAs: 0.10 Diamond: 0.08

Observed relative variance = F x Poisson relative variance

Scintillator vs Germanium

The top spectrum is from a scintillation detector, and the bottom is from a germanium semiconductor detector. The superior energy resolution of the germanium is evident from the much narrower peaks, allowing separation of gamma-ray energies that are unresolved in the scintillator spectrum.

Things to Look Out For

Crocodile

Efficiencies

Response to Uniform Illumination

ESRF TV Detector Thompson IIT & CCD

Gaps

Spec 0.2mm max

Worst gap 2.97mm

Pixels in gaps 513922 5.45%

Graded Absorber Comparison

Mar Image Plate

ESRF-Thompson IIT / CCD

Daresbury MWPC

Spatial distortion

intensifier detector

IPlate Single Peak PSF

Parallax Broadening

Parallax Effect

Image Plate

Gas Proportional Counter

Daresbury High Pressure MWPC

Force on 28 x 28 cm window at 5 bar = 4 tonnes Force on window of 1 x 1 cm at 5 bar = 5 kg

RAPID2 SAX WAX

WAXS detector - GMSD

Geometric Distortion

Overlaps

Dark Currents

Flat and Dark Correction

For each image, two correction images must be recorded.

- 1. A flat field (uniform illumination of the detector)
- 2. A dark image (no irradiation of detector)

Both must be recorded with the same exposure time as the original image since dark current is a function of exposure time.

Then apply the following correction

$$Corrected = \frac{(image - dark)}{(flat - dark)}$$

Dark Current

Number failing 2 measurements 5-2000s

Mean	44764	0.47%
Min	40822	0.43%
Max	48706	0.52%

nb. 14300 pixels not common to both

Pixels above the 0.2 photons pix-1 specification

Subtraction of dark images

Flashscan 30 - Image Lag

Radiation Damage (Medipix)

- Damage occurred at 40Gy or 1.3×10¹⁰pht/mm² in the readout chip
- At 13 keV photon energy
 - ♦ Strong diffraction spots typically 10⁵ phts/s or 10⁶ phts/mm2/s
 - Damage requires ~ 8hours exposure
 - \bullet Direct beam (10¹⁰–10¹³ photons/mm²/s)
 - Damage in less than a second.

dpiX Flashscan 30 PaxScan 4030

Flashscan 30 - Performance

Electronics Issues

Koalas

Albino Kookaburra

Amplification

- Voltage mode
 - Output α input voltage
 - ♦ Effect of R_f dominates C_f
- Current mode
 - Output α input current
 - ♦ Low input impedance
- Charge mode
 - Output α input charge
 - lacktriangle C_f dominates R_f

- In almost all cases we require amplification
- Amplifier-detector interaction is critical
- Most important element is the input, often a FET
- Noise is the major issue
 - ♦ Thermal or Johnson Noise
 - Brownian motion of electrons
 - No current flow required
 - White noise
 - ♦ Shot Noise
 - Fluctuations in current
 - White noise

$$\bar{i}^2 = 2q_e \bar{I} \Delta f$$

Equivalent Noise Charge

- Low noise is no use if signal is low
- Introduce ENC which is that signal charge that will produce the same output as the RMS noise

$$ENC^{2} = \exp(2) \left[\frac{kT}{2R_{g}} \tau + \frac{eI_{D}}{4} \tau + \frac{kT(C_{in})^{2}}{2g_{m}\tau} \right]$$

Where

- k = Boltzman's constant
- T = temperaturee = the electronic charge
- R_g = Load resistance and/or feedback resistance
- g_m = transconductance of input FET. (Links current in to voltage out) τ = Rise time of amplifier
- = input / stray and feedback capacitance
- Note that ENC is directly related to energy resolution
- $FWHM(keV) = 2.355 \times 10^{-3} ENC/ew$ where w is the energy per electron

Noise Dependence

$$ENC^{2} = e^{2} \left[\frac{kT}{2R_{f}} \tau + \frac{q_{e}I_{D}}{4} \tau + \frac{kT(C_{in})^{2}}{2g_{m}\tau} \right]$$

τ optimum at

$$\tau_{opt} = \left[\frac{kT/2g_m}{(kT/2R_f) + (q_eI_D/4)}\right]^2 C_{in}$$

- Choosing optimum τ gives best noise performance but may not be fast enough
- We often have to sacrifice energy resolution for speed

Optimum t

$$ENC_{\min}^{2} = 2 \exp(2) \left[\left(\frac{kT}{2R_g} \right) + \left(\frac{eI_D}{4} \right) \left(\frac{kTC_{in}^{2}}{2g_m} \right) \right]^{2}$$

- \blacksquare R_g as large as possible $\sim 10^{10}\Omega$
- I_D (leakage) as small as possible
 - ♦ For Ge cooling is vital
- Low T is good
- Arr C_{in} as small as possible (note that this includes C_f)
- \blacksquare g_m as large as possible but this affects C_{in}

Optimum Spectral Resolution

- Low capacitance
 - ♦ Small planar < 1pF
- Low leakage currents
- \blacksquare Maximise R_g and/or R_f
 - Remove altogether so $R_f = \infty$
- Use optical reset
- Can improve FWHM by 20%

Shannon's Theorem or Nyquist Criterion

- If the input is not band limited to frequencies less than $\omega s/2$, then aliasing will occurs at frequencies $\omega 1\pm n$ where;
- $\omega 1$ = original signal frequency, ωs = sampling frequency, n = an integer

- The highest frequency that can be measured is twice the sampling frequency
- If you have 100μm pixels, ideal PSF > 200μm

Synchrotron Detectors

- A synchrotron source is used primarily when sensitivity is an issue
 - ♦ Signal too weak
 - ♦ Time resolution too poor
 - Sample too small
- More intensity can help this but...
- It places a major strain on detectors and Flux is a major issue!

Dead Time

 R_i =input rate, R_d =detected rate, τ dead time

Non-paralysable

- Fraction of time detector is dead = $R_d \tau$
- Live time is therefore = 1- $R_d \tau$
- Input rate = $R_i = R_d/(1 R_d \tau)$

Paralysable

- R_d = Probability of getting no event within τ of an event
- Probability of n events in time t is $P(n,t) = \frac{e^{-R_i t} (R_i t)^n}{n!}$
- Detected rate $R_d = P(0, \tau) = R_i e^{-R_i \tau}$

EDR Detector for Powder Diffraction

Standard detector

- Saturation count rate: 1 MHz
- Linear region: up to 300 kHz
- Electronic background: 0.2 cps
- Energy range: 4-25 keV

Modified detector

- Saturation count rate: 3 MHz
- Linear region: up to 2 MHz
- Electronic background: 0.7 cps
- Energy range: 4-25 keV

Ion Mobility

Gas	Ions	Mobility (cm ² V ⁻¹ s ⁻¹)
Ar	$(OCH_3)_2 CH_2^+$	1.51
Iso C ₄ H ₁₀	$(OCH_3)_2 CH_2^+$	0.55
$(OCH_3)_2 CH_2$	$(OCH_3)_2 CH_2^+$	0.26
Ar	Iso $C_4 H_{10}^+$	1.56
Iso C ₄ H ₁₀	Iso $C_4 H_{10}^+$	0.61
Ar	$\mathrm{CH_4}^+$	1.87
CH_4	CH_4^+	2.26
Ar	CO_2^+	1.72
CO_2	CO_2^+	1.09
Ar	electrons	~1000

For 1kV across 1cm.

Electrons take 1ms

Ions take ~1ms!

Spectral Peak Shift vs Rate

Detector Considerations

- Intensity Measurement
 - Uniformity across device
 - Ageing, radiation damage
 - Dynamic Range
 - Linearity of Response
 - Stability
- Spatial Measurement
 - Spatial Resolution
 - Spatial Distortion
 - **♦** Parallax

- Energy Measurement
 - Spectral Resolution
 - Linearity of Response
 - Uniformity of Response
 - Stability
- Time Measurement
 - Frame Rate
 - Photon Time Resolution
- Others
 - Size and weight
 - **♦** Cost

A Universal Specification?

Wombat

Counting Statistics

- Photons are quantised and hence subject to probabilities
- The Poisson distribution expresses the probability of a number of events occurring in a time period
- If the expected number is n then $P(n,k) = \frac{n^{k}e^{-n}}{k!}$
- \blacksquare The mean of P(n,k) is n
- \blacksquare The variance of P(n,k) is n
- The standard deviation is \sqrt{n}
- Fractional error = $(\sqrt{n})/n=1/\sqrt{n}$
- As n increases, uncertainty and noise decrease

Performance Measure - DQE

Perfect detector
$$SNR_{inc} = \sqrt{N_{inc}}$$
 $\therefore N_{inc} = SNR^2_{inc}$
Real detector $SNR_{Non-ideal} < \sqrt{N_{inc}}$

Can define N_{photons} that describes real SNR

$$NEQ = SNR^2_{Non-ideal}$$

Ratio of this to N_{inc} is a measure of efficiency

$$DQE = \frac{NEQ}{N_{inc}} = \frac{SNR^2_{Non-ideal}}{SNR_{inc}^2}$$

Note that DQE is f(spatial and spectral frequencies)

Effect of Peak Width

DQE Comparison

DN-5 beam 2.6μGy

To Count or Not to Count

Tasmanian Devil

Specifications

Wombat

Collagen 100s Exposure

Collagen 10s Exposure

Collagen 0.3s Exposure

Cornell PAD (Integrating)

- Rapid Framing Imager
 - ♦ 15×13.8mm² active area
 - ♦ 150µm square pixel
 - ♦ Storage for 8 frames
 - Selectable T_{int} down to 1μs
 - ♦ Deadtime < 1 µs

Diesel Fuel Injection Movie

- Injection
 - ♦ Supersonic injection 1350psi Cerium added
 - ♦ Chamber 1atm SF₆
 - ♦ 10⁸-10⁹ X-rays/s/pix (6keV)
 - ♦ 1.1ms Pulse

- Movie
 - Length 1.3msFrame length 5.13μs
 - Dead time 2.56μs / frame
 - ♦ 168 frames (21 groups of 8)
 - ♦ Average 20× to improve S/N
 - Sequence 5×10^4 images

The Future

A Detector System

Pixel Array Detector

- A. Top electrode
- B. Pixellated semiconductor
- **C.** Collection electrodes
- **D.** Bump bonds
- **E.** Input electrode
- F. Pixellated ASIC

5 bits RAM (1 frame): 0.35μm

5 bits RAM (1 frame): 90nm

The Problem of Multiple Scatters

- \blacksquare Need to measure E_0
- Must be able to detect multiple deposits as single event
- Must minimise E_{esc}

Counting Pixel Detector Problems

- High power consumption
 - Cooling
- Number of connections
 - Multiplexing
 - Read out time significant
- Limited number of bits in counter
 - Dynamic range issues for diffraction
 - ♦ 15bits @ 1Mcps input rate = 30ms frame
 - Read time can be significant
 - Fast read > high power
- Technology not yet good enough for microsecond framing

Available Compound Semiconductors

- Predominately CdZnTe, CdTe and GaAs.
- II-VI materials CdTe and CdZnTe cover a suitable range of band gaps:
 - ◆ 1.44 eV (CdTe), 1.57 eV (CdZnTe, 10% Zn), 1.64 eV (CdZnTe, 20% Zn)
- Resistivity of CdZnTe is higher than CdTe, hence lower dark current, higher spectroscopic resolution
- Poor hole transport requires electron-sensitive detectors

Absorption Efficiency of Semiconductors

CdZnTe Spectral Resolution

References

- Delaney CFG and Finch EC
 - ♦ Radiation detectors. Physical Principles and Applications, Clarendon Press, Oxford 1992, ISBN 0 19 853923 1
- Knoll GE
 - Radiation Detection and Measurement, John Wiley and Sons 1989
- Proceedings of the 6th International Conference on position sensitive detectors
 - Nuclear Instruments and Methods in Physics Research A513 (2003)
- IEEE Nuclear Science Symposia

Semiconductors

Material	ρ	ϵ_r	$ au_R$	$(\mu\tau)_e$	$(\mu\tau)_h$
	$(\Omega \ \mathrm{cm})$		(ms)	$({\rm cm}^2/{\rm V})$	$(\mathrm{cm}^2/\mathrm{V})$
Si	$< 10^4$	11.7	1.0×10^{-8}	> 1	> 1
Ge	50	16	7.1×10^{-11}	> 1	$\simeq 1$
GaAs	1.0×10^{7}	11.0	1.1×10^{-5}	8.0^{-5}	4.0×10^{-6}
CZT	$3-5\times10^{10}$	10.9	$2.9 - 4.9 \times 10^{-2}$	$3-5\times10^{-3}$	$5-8\times10^{-5}$
CdTe	1.0×10^{9}	11.0	9.7×10^{-4}	3.3×10^{-3}	2.0×10^{-4}
HgI_2	1.0×10^{13}	8.8	7.8	1.0×10^{-4}	$4.0\times10{-5}$
PbI_2	1.0×10^{12}	$\simeq 10$	0.89	8.0×10^{-6}	6.0×10^{-7}

Readout Strategies

Imaging

- Massively parallel
 - Position derived from individual pixel
 - Highly parallel: 2000×2000 pixels = 4 million channels!!!
 - Suitable for counting and integrating systems
 - Pixel array detectors
- ♦ X-Y Interpolating
 - Position derived from measuring signals
 - Moderately parallel: 2000×2000 pixels from few hundred channels
 - Only suitable for counting systems
 - MWPCs e.g. RAPID
- ♦ Sequential
 - Position derived from point in sequence
 - Not really parallel
 - Only really suitable for integrating systems
 - CCDs, Image plates

Spectroscopic

Can only add more channels for speed

Signal Levels

Energy per electron hole pair, w (eV)	Stage 1 signal @ 10keV	Stage 2 Transfer to electron gain	Minimum N @ 10keV	Stage n 0 noise gain	Signal (e ⁻)
24.4	410e-	1	410	10^{5}	4×10^7
20.8	481e-	1	481	5×10 ⁴	2.4×10^{7}
3.62	2760e ⁻	1	2760	1	2.8×10^{3}
2.96	3380e-	1	3380	1	3.4×10^{3}
Fluorescence or scintillation					
	266 photons	0.1	30	10^{5}	3×10^6
	500 photons	0.04	20	10^{4}	2×10^5
	75 F centres	0.07	5	10^5	5×10 ⁵
	electron hole pair, w (eV) 24.4 20.8 3.62 2.96	electron hole pair, w (eV) 24.4 410e- 20.8 481e- 3.62 2760e- 2.96 3380e- intillation 266 photons 500 photons	electron hole pair, w (eV) 24.4 20.8 410e- 20.8 481e- 1 2.96 3380e- 1 266 photons 266 photons 266 photons 0.04	electron hole pair, w (eV) 24.4 410e- 20.8 481e- 1 2760 2.96 3380e- 1 266 photons 266 photons 0.04 20 10keV electron gain Transfer to electron gain 410 410 2760	electron hole pair, w (eV) signal @ 10keV electron gain Transfer to electron gain 24.4 410e- 20.8 481e- 1 410 10 ⁵ 20.8 481e- 1 481 5×10 ⁴ 3.62 2760e- 2.96 3380e- 1 3380 1 intillation 266 photons 0.1 30 10 ⁵ 500 photons 0.04 20 10 ⁴

Scintillators - Basic Properties

	Light O/P [photons/keV]	Decay Time [ns]	Emis. Wavelength [nm]	Density [g/cm ³]
Nal(Tl)	38	250	415	3.7
CsI(TI)	54	1000	550	4.5
BaF ₂	10	0.7/630 fast/slow	220/310 fast/slow	4.9
LaCl ₃ (Ce)	49	28	350	3.8
LaBr ₃ (Ce)	66	16	380	5.1

FWHM energy resolution at @ 662 keV

NaI(Tl)	$\Delta E/E \sim 6\%$
LaCl ₃	$\Delta E/E \sim 4\%$
LaBr ₃	$\Delta E/E \sim 3\%$

CdZnTe $\Delta E/E \sim 2\%$ (after correction for carrier recombination)

Tortoise and Hare?

- Accelerators currently 10¹³-10¹⁴ photons to sample
- New machines e.g. XFEL, TESLA
 - ♦ 10²⁵ photons to sample!!!
- Detectors
 - ◆ Currently 10⁷-10⁸
 - ♦ In 10 years.....
- Hare shows no sign of slowing down
- Tortoise is not catching up

Probability of Single Events

Resolving time required

Input Rate (cps/pixel)