Overview of Synchrotron Radiation (SR)

Moonhor Ree
Director, Pohang Accelerator Laboratory (PAL)
Professor, Chemistry Department & Polymer Research Institute
Pohang University of Science & Technology
Pohang 790-784, Korea
Tel: +82-54-279-1001, 2120
Fax: +82-54-279-0999, 3399
E-mail: ree@postech.edu
http://pal.postech.ac.kr
http://www.postech.ac.kr/chem/mree

3rd AOFSRR School: Cheiron School 2009 (Nov. 2-11, 2009)
Spring-8/RIKEN Harima, Hyogo, Japan
Acknowledgments:

Organizing Committee Members of Cheiron School
Spring-8/JASRI; Dr. Tetsuhisa Shirakwa, President
RIKEN Harima Institute
MEXT, Japan; Director Hiroki Takaya
AOFSRR

Prof. Keng Liang (NSRRC, Taiwan)
Prof. Zhentang Zhao (SSRF, China)
Prof. Tetsuya Ishikawa (RIKEN/Spring-8, Japan)
Prof. Masaki Takata (RIKEN/Spring-8/U Tokyo, Japan)
Prof. Osamu Shimomura (KEK, Japan)
Prof. Hiroshi Kawata (KEK, Japan)
Prof. Won Namkung (PAL, Korea)
Prof. In-Soo Ko (PAL, Korea)
Outline

1. Introduction
 - History of SR
 - SR

2. 1st-2nd Generation SR

3. 3rd Generation SR
 - Current Status of 3rd Generation SR Facilities
 - Applications in Science & Technology

4. 4th Generation SR
 - Current Status of 4th Generation SR Facilities
 - Applications in Science & Technology

5. Summary & Conclusions

6. Acknowledgments
AOFSRR
(Asia–Oceania Forum for Synchrotron Radiation Research)

Objectives:
(1) To establish a general framework of collaboration for the development of science and technology, which mutually benefits advancing the research goals of the Parties
(2) To promote comprehensive cooperation in the Asia Oceania region
(3) To provide education and communication opportunities
 - AOFSRR Conference (per year)
 1st, 24-25/11/2006, Tsukuba, Japan
 2nd, 31/10-02/11/2007, Shinchu, Taiwan
 3rd, 4-5/12/2008, Melbourne, Australia
 4th, 31/11-02/12/2009/Shanghai, China
 5th, 2010/Pohang, Korea ……..
 - Cheiron Summer School
 1st, 10-19/09/2007, SPring-8, Japan
 2nd, 29/09-08/10/2008, Spring-8
 3rd, 02-11/11/2009, Spring-8 …..
Local Organizing Member – Cheiron School
Masaki Takata (RIKEN/SPring-8)
Masayo Suzuki (JASRI/SPring-8)
Kouki Sorimachi (RIKEN/SPring-8)
Hiroaki Kimura (JASRI/SPring-8)
Haruo Ohkuma (JASRI/SPring-8)
Ryotaro Tanaka (JASRI/SPring-8)
Naoto Yagi (JASRI/SPring-8)
Yoshiharu Sakurai (JASRI/SPring-8)
Shunji Goto (JASRI/SPring-8)

Committee
Principal: Keng Liang (President of AOFSRR, NSRRC/Taiwan)
Vice Principal: Moonhor Ree (Vice President of AOFSRR, PAL/Korea)
Secretary: Masaki Takata (RIKEN/JASRI/SPring-8, Japan)
AOFSRR

Council Member
- Keng Liang (NSRRC/Taiwan)
- Moonhor Ree (PAL/Korea)
- Masaki Takata (RIKEN-JASRI-Spring8/Japan)
- Yoshiyuki Amemiya (Univ. of Tokyo/Japan)
- Robert Lamb (Australia Synchrotron/Australia)
- Herbert O. Moser (SSLS/Singapore)
- Masaharu Oshima (President of JSSRR, Univ. of Tokyo/Japan)
- Weerapong Pairsuwan (NSRC/Thailand)
- V. C. Sahni (INDUS/India)
- Hongjie Xu (SSRF/China)
- Osamu Shimomura (KEK/Japan)
- Richard Garrett (ANSTO/Australia)

International Advisory Board
- Tetsuya Ishikawa (RIKEN/Japan)
- Hideo Ohno (JASRI/Japan)
- J. Murray Gibson (APS/USA)
- W. G. "Bill" Stirling (ESRF/France)
- Gerhard Materlik (Diamond/UK)
- Nobuhiro Kosugi (IMS/Japan)
- Shih-Lin Chang (NTHU/Taiwan)

Facilities for the Future of Science: A Twenty-Year Outlook

- ITER
- UltraScale Scientific Computing Capability
- Joint Dark Energy Mission
- Spallation Neutron Source 2-MW Upgrade
- Spallation Neutron Source Second Target Station
- Whole-Probe X-ray Analysis
- Linear Collider
- Protein Production and Tagging
- Rare Isotope Accelerator
- Nuclear Data Decay
- Underground Cyclotron
- Next-Step Spherical Torus
- RHIC
- Characterization and Imaging of Materials and Machines
- OSIARF 120GeV Upgrade
- ESSnet Upgrade
- National Synchrotron Light Source Upgrade
- Super Neutron Beam
- Advanced Light Source Upgrade
- Neutron Scattering Facility
- Transmission Electron Microscope
- BEV
- Advanced Photon Source Upgrade
- NIF
- Fusion Energy Contingency
- Linear Collider
- Analysis and Modeling of Cellular Systems
- HFR Second Coil Source and Guide Hall
- Integrated Beam Experiment
Synchrotron Radiation

- When moving along a curved trajectory in a speed close to that of light, electrons emit electromagnetic radiation in tangential direction. This kind of radiation is called synchrotron radiation since it was first observed at a 70 MeV synchrotron radiation machine.

- The curved trajectory can be created by bending magnet, wiggler and undulator magnets in accelerators.
J.J. Thomson was awarded the 1906 Nobel Prize in Physics for the discovery of the electron and his work on the conduction of electricity in gases.
General Electric betatron built in 1946, the origin of the discovery of Synchrotron radiation.

The radiation was named after its discovery in a General Electric synchrotron accelerator built in 1946 and announced in May 1947 by Frank Elder, Anatole Gurewitsch, Robert Langmuir, and Herb Pollock in a letter entitled "Radiation from Electrons in a Synchrotron." Pollock recounts:

"On April 24, Langmuir and I were running the machine and as usual were trying to push the electron gun and its associated pulse transformer to the limit. Some intermittent sparking had occurred and we asked the technician to observe with a mirror around the protective concrete wall. He immediately signaled to turn off the synchrotron as "he saw an arc in the tube." The vacuum was still excellent, so Langmuir and I came to the end of the wall and observed. At first we thought it might be due to Cherenkov radiation, but it soon became clearer that we were seeing Ivanenko and Pomeranchuk radiation."
First Observation of Synchrotron Radiation from Galaxy (July, 1054)

The supernova was observed by ancient Korean/Japanese/Chinese astronomers in the year 1054. The pulsar (the bright compact emission) produces highly relativistic electrons which themselves produce synchrotron radiation in the magnetic field of the nebula.
How a Synchrotron Works

4. Storage Ring
The booster ring feeds electrons into the storage ring, a many-sided donut-shaped tube. The tube is maintained under vacuum, as free as possible of air or other stray atoms that could deflect the electron beam. Computer-controlled magnets keep the beam absolutely true.

Synchrotron light is produced when the bending magnets deflect the electron beam; each set of bending magnets is connected to an experimental station or beamline. Machines filter, intensify, or otherwise manipulate the light at each beamline to get the right characteristics for experiments.

5. Focusing the Beam
Keeping the electron beam absolutely true is vital when the material you’re studying is measured in billionths of a metre. This precise control is accomplished with computer-controlled quadrupole (four pole) and sextupole (six pole) magnets. Small adjustments with these magnets act to focus the electron beam.

3. An Energy Boost
The linac feeds into the booster ring which uses magnetic fields to force the electrons to travel in a circle. Radio waves are used to add even more speed. The booster ring ramps up the energy in the electron stream to between 1.5 and 2.9 giga-electron volts (GeV). This is enough energy to produce synchrotron light in the infrared to hard X-ray range.

2. Catch the Wave
The electron stream is fed into a linear accelerator, or linac. High energy microwaves and radio waves chop the stream into bunches, or pulses. The electrons also pick up speed by “catching” the microwaves and radio waves. When they exit the linac, the electrons are travelling at 99.99986 per cent of the speed of light and carry about 300 million electron volts of energy.

1. Ready, Aim...
Synchrotron light starts with an electron gun. A heated element, or cathode, produces free electrons which are pulled through a hole in the end of the gun by a powerful electric field. This produces an electron beam about the width of a human hair.

Source: University of Saskatchewan Paradigm Media Group Inc.
Pohang Light Source

2.5 GeV Linac

2.5 GeV Storage Ring

Beamlines and Exp. Stations

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy (GeV)</td>
<td>2.5</td>
</tr>
<tr>
<td>Rf (MHz)</td>
<td>2856</td>
</tr>
<tr>
<td>Klystron power (MW), max</td>
<td>80</td>
</tr>
<tr>
<td>Bunch length (ps)</td>
<td>13</td>
</tr>
<tr>
<td>Normalized emittance (nm.mrad)</td>
<td>150</td>
</tr>
<tr>
<td>Beam current (A)</td>
<td>30</td>
</tr>
<tr>
<td>Energy spread (%), fwhm</td>
<td>0.6</td>
</tr>
<tr>
<td>Total length (m)</td>
<td>160</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam energy (GeV)</td>
<td>2.5</td>
</tr>
<tr>
<td>Circumference (m)</td>
<td>280.56</td>
</tr>
<tr>
<td>Natural emittance (nm)</td>
<td>18.9</td>
</tr>
<tr>
<td>Rf (MHz)</td>
<td>500.082</td>
</tr>
<tr>
<td>Rf voltage (MV)</td>
<td>1.6</td>
</tr>
<tr>
<td>Tunes</td>
<td>14.28/8.18</td>
</tr>
<tr>
<td>Super-periods</td>
<td>12</td>
</tr>
</tbody>
</table>

30 B/L (9 IDs)
1 FEL (THz BL)
10 B/L (in plan)
41 (Total)
52 (in full capacity)

M. Ree
Cheiron School-2009
Shanghai Light Source

Electron Linac 150MeV

Booster 3.5GeV, C=180m

Storage Ring 3.5GeV, C=432m

Electron Linac 150MeV

M. Ree

Cheiron School-2009
Properties of Synchrotron Radiation

驾车 spectrum: from infrared to hard X-ray;

Wide tunability in photon energy (or wavelength) by monochromatization: sub eV up to the MeV Range;

High Brilliance and high flux: many orders of magnitude higher than that with the conventional X-ray tubes;

Highly collimated: radiation angular divergence angle proportions inversely to electron beam energy \((1/ \gamma)\);

High level of polarizations: linear, circular, elliptical;

Pulsed time structures: tens of picoseconds pulse;

…,
Over the past 30 years, design and construction of dedicated SR facilities have been continuously carried out all over the world. Currently there are about 50 SR light sources in operation and about 20 of them are third generation light sources;

- Before 1980s, first generation light sources, attached to high energy machines, were parasitically operated;
- From the mid-1970s to the late 1980s, second generation light sources were designed and constructed as dedicated SR user facilities;
- From the mid-1980s, third generation light sources have been designed and constructed with low emittance beam and undulators;
- Since the Mid-1990s, the construction of intermediate energy third generation light sources has been the focus of efforts worldwide;
- Meanwhile compact synchrotron radiation facilities have been designed and constructed.
Synchrotron Radiation Facilities (in operation)

Asia-Oceania : 26 Europe : 25 America : 18
1st Generation SR Facilities (1)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Location</th>
<th>Energy (GeV)</th>
<th>Operation Year (Status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SURF-II(NBS)</td>
<td>USA</td>
<td>0.28</td>
<td>1974-1997 (Upgraded)</td>
</tr>
<tr>
<td>DAΦNE</td>
<td>Italy</td>
<td>0.51</td>
<td>1999 (Operation)</td>
</tr>
<tr>
<td>ASTRID</td>
<td>Denmark</td>
<td>0.6</td>
<td>1990 (Operation)</td>
</tr>
<tr>
<td>Accum.Ring(KEK)</td>
<td>Japan</td>
<td>6.5</td>
<td>Partly Ded.</td>
</tr>
<tr>
<td>DCI(LURE)</td>
<td>France</td>
<td>1.8</td>
<td>Dedicated</td>
</tr>
<tr>
<td>DORIS(DESY)</td>
<td>Germany</td>
<td>3.7-5.2</td>
<td>1974-1993 (Upgraded)</td>
</tr>
<tr>
<td>SPEAR-I(SSRL)</td>
<td>USA</td>
<td>3.0-3.5</td>
<td>1972-1992 (Upgraded)</td>
</tr>
<tr>
<td>VEPP-3(INP)</td>
<td>Russia</td>
<td>2.2</td>
<td>1979-1985 (Upgraded)</td>
</tr>
<tr>
<td>CESR(CHESS)</td>
<td>USA</td>
<td>5.5</td>
<td>1979-2002 (Upgraded)</td>
</tr>
<tr>
<td>BEPC(IHEP)</td>
<td>China</td>
<td>1.5-2.8</td>
<td>1989-2004 (Upgraded)</td>
</tr>
<tr>
<td>ELSA</td>
<td>Germany</td>
<td>1.5-3.5</td>
<td>1987 (Operation)</td>
</tr>
</tbody>
</table>

1st Generation SR Facilities (1): Synchrotron light sources were basically beamlines built onto the existing facilities designed for particle physics studies.
1st Generation SR Facilities (2)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Location</th>
<th>Energy (GeV)</th>
<th>Operation Year (Status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSSR</td>
<td>Japan</td>
<td>1.5</td>
<td>Proposed</td>
</tr>
<tr>
<td>TRISTAN MR</td>
<td>Japan</td>
<td>6.0-30</td>
<td>1987-1995 (Shutdown)</td>
</tr>
<tr>
<td>AmPS</td>
<td>Netherlands</td>
<td>0.9</td>
<td>Planned use</td>
</tr>
<tr>
<td>EUTERPE</td>
<td>Netherlands</td>
<td>0.4</td>
<td>Planned use</td>
</tr>
<tr>
<td>VEPP-2M</td>
<td>Russia</td>
<td>0.7</td>
<td>1965-1999 (Upgraded)</td>
</tr>
<tr>
<td>VEPP-4</td>
<td>Russia</td>
<td>5.0-7.0</td>
<td>1994 (Operation)</td>
</tr>
<tr>
<td>N-100</td>
<td>Russia</td>
<td>2.2</td>
<td>Dedicated</td>
</tr>
<tr>
<td>HP-2000</td>
<td>Russia</td>
<td>5.5</td>
<td>Partly Ded.</td>
</tr>
</tbody>
</table>
2nd Generation SR Facilities (1)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Location</th>
<th>Energy (GeV)</th>
<th>Operation Year (Status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRS(Daresbury)</td>
<td>UK</td>
<td>2.0</td>
<td>1981-2008 (Decommissioned)</td>
</tr>
<tr>
<td>NSLS-I</td>
<td>USA</td>
<td>0.75</td>
<td>1982 (Operation)</td>
</tr>
<tr>
<td>Aladdin</td>
<td>USA</td>
<td>0.8-1.0</td>
<td>1977 (Operation)</td>
</tr>
<tr>
<td>PF(KEK)</td>
<td>Japan</td>
<td>2.5-3.0</td>
<td>1983 (Operation)</td>
</tr>
<tr>
<td>BESSY I</td>
<td>Germany</td>
<td>0.8</td>
<td>1987-1999 (Decommissioned)</td>
</tr>
<tr>
<td>UVSOR</td>
<td>Japan</td>
<td>0.75</td>
<td>1983-2003 (Upgraded)</td>
</tr>
<tr>
<td>SOR-Ring</td>
<td>Japan</td>
<td>0.38</td>
<td>1974-1997 (Shutdown)</td>
</tr>
<tr>
<td>INDUS-I</td>
<td>India</td>
<td>0.45</td>
<td>1999 (Operation)</td>
</tr>
<tr>
<td>LNLS-I</td>
<td>Brazil</td>
<td>1.15</td>
<td>1997 (Operation)</td>
</tr>
<tr>
<td>HESYRRL(USTC)</td>
<td>China</td>
<td>0.8</td>
<td>1991 (Operation)</td>
</tr>
<tr>
<td>MAX(LTH)</td>
<td>Sweden</td>
<td>0.55</td>
<td>1986 (Operation)</td>
</tr>
<tr>
<td>PETRA-II</td>
<td>Germany</td>
<td>7.0-13</td>
<td>1995-2009 (Decommissioned)</td>
</tr>
</tbody>
</table>

2nd Generation? Synchrotron light sources were dedicated to the production of synchrotron radiation and employed electron storage rings to harness the synchrotron light.
2nd Generation SR Facilities (2)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Location</th>
<th>Energy (GeV)</th>
<th>Operation Year (Status)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TERAS</td>
<td>Japan</td>
<td>0.8</td>
<td>Dedicated</td>
</tr>
<tr>
<td>Siberia-I</td>
<td>Russia</td>
<td>0.45</td>
<td>Dedicated</td>
</tr>
<tr>
<td>TNK</td>
<td>Russia</td>
<td>1.2-1.6</td>
<td>Dedicated</td>
</tr>
<tr>
<td>CAMD</td>
<td>USA</td>
<td>1.2</td>
<td>(Operation)</td>
</tr>
</tbody>
</table>
Third Generation Light Sources

- Third generation light sources, based on advanced undulators and low emittance storage ring, are currently the main working horses. According to the storage ring energy, it can be classified into, low-, high- and intermediate energy light sources;

- High energy third generation light sources (>4GeV): ESRF, APS, Spring-8;

- Low energy ones (<2.5GeV): ALS, Elettra, TLS, BESSY-II, MAX-II, LNSL, …;

- Intermediate energy ones (2.5 ~ 4.0GeV): PLS, ANKA, SLS, CLS, SPEAR3, Diamond, SOLEIL, INDUS-II, ASP, SSRF, ALBA, NSLS-II, TPS, MAX-IV, …;

- In addition, further advanced third generation light sources, diffraction limited or ultimate, are under investigations and studies. Notably, progress is very encouraging in upgrading the high energy physics accelerators into advanced third generation light sources, such as the PETRA-III project under construction at DESY and the PEP-X proposal at SLAC;
Intermediate Energy Light Sources

- The pioneering third generation light sources generated bright radiation based on fundamental and lowest harmonic spectral line of undulator:
 - High energy machines were optimized at 5-25keV for hard X-ray science;
 - Low energy ones were designed & optimized for VUV and soft X-ray sciences;

- As undulator technology well developed, its theoretical brilliance can be achieved at higher harmonics, this leads to a few of outstanding properties of intermediate energy light sources;
 - The photon beam properties in the 5-25keV range generated with intermediate energy light sources are comparable with those from high energy machines;
 - Up to 11th-15th harmonics are currently used at operating machines;
 - Circumference ranges from 100±m to ~800m depending on budget;
 - Low construction and operation costs make it a cost effective light source right for meeting the regional needs;
Intermediate Energy SR Facilities

- Since the beginning of 21st century, intermediate energy light sources have been successively put into operation;
 - Three more will be operational in the coming years, SSRF in 2009, ALBA in 2010 and SESAME probably in 2011;
 - NSLS-II, TPS and MAX-IV may start operation before 2015;

- Other intermediate light source plans are under consideration or R&D in countries including Armenia (CANDLE), Poland and South Africa;

- Some new proposals are still appearing, including a new one in China;
3rd Generation Light Sources around the World
3rd Generation Light Sources in Operation (1)

<table>
<thead>
<tr>
<th>Light Source</th>
<th>Energy (GeV)</th>
<th>Circumference (m)</th>
<th>Emittance (nm.rad)</th>
<th>Current (mA)</th>
<th>Straight Section</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ALS</td>
<td>1.9</td>
<td>196.8</td>
<td>6.3</td>
<td>400</td>
<td>12×6.7m</td>
<td>Operation (1993)</td>
</tr>
<tr>
<td>2. ESRF</td>
<td>6.0</td>
<td>844.4</td>
<td>3.7</td>
<td>200</td>
<td>32×6.3m</td>
<td>Operation (1993)</td>
</tr>
<tr>
<td>3. TLS</td>
<td>1.5</td>
<td>120</td>
<td>25</td>
<td>240</td>
<td>6×6m</td>
<td>Operation (1993)</td>
</tr>
<tr>
<td>4. ELETTRA</td>
<td>2.0/2.4</td>
<td>259</td>
<td>7</td>
<td>300</td>
<td>12×6.1m</td>
<td>Operation (1994)</td>
</tr>
<tr>
<td>5. PLS</td>
<td>2.5</td>
<td>280.56</td>
<td>18.6</td>
<td>200</td>
<td>12×6.8m</td>
<td>Operation (1995)</td>
</tr>
<tr>
<td>6. APS</td>
<td>7.0</td>
<td>1104</td>
<td>3.0</td>
<td>100</td>
<td>40×6.7m</td>
<td>Operation (1996)</td>
</tr>
<tr>
<td>7. SPring-8</td>
<td>8.0</td>
<td>1436</td>
<td>2.8</td>
<td>100</td>
<td>44×6.6m, 4×30m</td>
<td>Operation (1997)</td>
</tr>
<tr>
<td>8. LNLS</td>
<td>1.37</td>
<td>93.2</td>
<td>70</td>
<td>250</td>
<td>6×3m</td>
<td>Operation (1997)</td>
</tr>
<tr>
<td>9. MAX-II</td>
<td>1.5</td>
<td>90</td>
<td>9.0</td>
<td>200</td>
<td>10×3.2m</td>
<td>Operation (1997)</td>
</tr>
<tr>
<td>10. BESSY-II</td>
<td>1.7</td>
<td>240</td>
<td>6.1</td>
<td>200</td>
<td>8×5.7m, 8×4.9m</td>
<td>Operation (1999)</td>
</tr>
<tr>
<td>11. Siberia-II</td>
<td>2.5</td>
<td>124</td>
<td>65</td>
<td>200</td>
<td>12×3m</td>
<td>Operation (1999)</td>
</tr>
<tr>
<td>12. NewSUBARU</td>
<td>1.5</td>
<td>118.7</td>
<td>38</td>
<td>500</td>
<td>2×14m, 4×4m</td>
<td>Operation (2000)</td>
</tr>
</tbody>
</table>
3rd Generation Light Sources in Operation (2)

<table>
<thead>
<tr>
<th>Light Source</th>
<th>Energy (GeV)</th>
<th>Circumference (m)</th>
<th>Emittance (nm.rad)</th>
<th>Current (mA)</th>
<th>Straight Section</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>13. SLS</td>
<td>2.4-2.7</td>
<td>288</td>
<td>5</td>
<td>400</td>
<td>3×11.7m, 3×7m, 6×4m</td>
<td>Operation (2001)</td>
</tr>
<tr>
<td>14. ANKA</td>
<td>2.5</td>
<td>110.4</td>
<td>50</td>
<td>200</td>
<td>4×5.6m, 4×2.2m</td>
<td>Operation (2002)</td>
</tr>
<tr>
<td>15. CLS</td>
<td>2.9</td>
<td>170.88</td>
<td>18.1</td>
<td>500</td>
<td>12×5.2m</td>
<td>Operation (2003)</td>
</tr>
<tr>
<td>16. SPEAR-3</td>
<td>3.0</td>
<td>234</td>
<td>12</td>
<td>500</td>
<td>2×7.6m, 4×4.8m, 12×3.1m</td>
<td>Operation (2004)</td>
</tr>
<tr>
<td>17. SAGA-LS</td>
<td>1.4</td>
<td>75.6</td>
<td>7.5</td>
<td>300</td>
<td>8×2.93m</td>
<td>Operation (2005)</td>
</tr>
<tr>
<td>18. ASP</td>
<td>3.0</td>
<td>216</td>
<td>7-16</td>
<td>200</td>
<td>14×5.4m</td>
<td>Operation (2007)</td>
</tr>
<tr>
<td>19. DIAMOND</td>
<td>3.0</td>
<td>561.6</td>
<td>2.7</td>
<td>300</td>
<td>6×8m, 18×5m</td>
<td>Operation (2007)</td>
</tr>
<tr>
<td>20. SOLEIL</td>
<td>2.75</td>
<td>354.1</td>
<td>3.74</td>
<td>500</td>
<td>4×12m, 12×7m, 8×3.8m</td>
<td>Operation (2007)</td>
</tr>
<tr>
<td>21. SSRF</td>
<td>3.0</td>
<td>432</td>
<td>3.9</td>
<td>300</td>
<td>4×12m, 16×6.5m</td>
<td>Operation (2009)</td>
</tr>
</tbody>
</table>
3rd Generation Light Sources in Operation (1)
New 3rd Generation Light Sources in Operation (2)
New 3rd Generation Light Sources in Commissioning, Construction and Plan

<table>
<thead>
<tr>
<th>Light Source</th>
<th>Energy (GeV)</th>
<th>Circumference (m)</th>
<th>Emittance (nm.rad)</th>
<th>Current (mA)</th>
<th>Straight Section</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>22. Indus-2</td>
<td>2.5</td>
<td>172.5</td>
<td>58</td>
<td>300</td>
<td>8×4.5m</td>
<td>Commi.&Opera.</td>
</tr>
<tr>
<td>23. PETRA-III</td>
<td>6.0</td>
<td>2304</td>
<td>1.0</td>
<td>100</td>
<td>1×20m, 8×5m</td>
<td>Construction (commissioning in 2010)</td>
</tr>
<tr>
<td>24. ALBA</td>
<td>3.0</td>
<td>268.8</td>
<td>4.5</td>
<td>400</td>
<td>4×8m, 12×4.2m, 8×2.6m</td>
<td>Construction</td>
</tr>
<tr>
<td>25. SESAME</td>
<td>2.5</td>
<td>133.12</td>
<td>26</td>
<td>400</td>
<td>8×4.44m, 8×2.38m</td>
<td>Construction</td>
</tr>
<tr>
<td>26. TPS</td>
<td>3.0</td>
<td>518.4</td>
<td>1.6</td>
<td>400</td>
<td>6×12m, 18×7m</td>
<td>Construction</td>
</tr>
<tr>
<td>27. CANDLE</td>
<td>3.0</td>
<td>216</td>
<td>8.4</td>
<td>350</td>
<td>16×4.8m</td>
<td>Planned</td>
</tr>
<tr>
<td>28. NSLS-II</td>
<td>3.0</td>
<td>792</td>
<td>2.1</td>
<td>500</td>
<td>15×9.3m, 15×6.6m</td>
<td>Planned</td>
</tr>
<tr>
<td>29. MAX IV</td>
<td>3.0</td>
<td>287.2</td>
<td>0.8</td>
<td>500</td>
<td>12×4.6m</td>
<td>Planned</td>
</tr>
<tr>
<td>30. TSRF</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>TBD</td>
<td>Planned</td>
</tr>
</tbody>
</table>
New 3rd Generation Light Sources

Indus-2

PETRA-III

SESAME

ALBA

TPS

CANDLE

NSLS-II

MAX-IV

M. Ree

Cheiron School-2009
Upgrade Project of PLS Facility (2009-2011)

- Higher Energy: 3.0 GeV (→ 2.5 GeV)
- Smaller Emittance: 5 nm·rad (→ 18 nm·rad)
- Higher Beam Flux: 10^2-10^3 higher
- More Insertion Device Beam Lines: 20 (→ 10)

(2) Top-Up Mode Operation (2008-2010)
Third Generation Light Sources

- PLS (upgraded)

M. Ree
Cheiron School-2009
Brilliance Improvement

![Graph showing the improvement of brilliance over time from various sources such as X-ray tubes, 1st generation, 2nd generation, and 3rd generation.](image-url)

- **Average Brightness (photons / sec / mm² / mm² / mrad² / 0.1% bandwidth)**
 - **Candle**
 - **60-W Light Bulb**
 - **X Ray Tube**
 - **Undulators**
 - **Bending Magnets**
 - **LCLS**

- **Log Beam Brilliance**
- **Log Peak Brilliance**

- **Year**
 - **1900**
 - **1920**
 - **1940**
 - **1960**
 - **1980**
 - **2000**
 - **2020**
 - **2040**

- **Generations**
 - **1st generation**
 - **2nd generation**
 - **3rd generation**

- **FELs**

- **Computer Storage Density**

M. Ree

Cheiron School-2009
Main Figures of Merit of Third Generation Light Sources

- Undulator average spectral brilliance
 - Emittance;
 - Beam current;
 - Energy spread;

- Beam quality
 - Beam position stability;
 - Intensity stability;
 - Energy stability;
 - Beam lifetime;
 - Availability, reliability and MTBF

- Time structured and polarized radiation
 - Bunch fill patterns and short bunch schemes;
 - Various ID applications;
Third Generation Light Sources

- **Properties of third generation light sources:**
 - Higher brilliance: up to 10^{17}~10^{21} photons/s/mm2/mrad2/0.1%BW;
 - Higher flux: up to 10^{15}~10^{17} photons/s/0.1%BW;
 - Sub-micro orbit stability: beam position and divergence stability down to submicron and sub-microradian;
 - Large number and various kinds of insertion devices: EU, PMW, PMU, EPU, HU, INVU, CPMU, SW, SU, ...;
 - Top-up operation: keeping operating current constant at 0.1-1% level;
 - Partially coherent (vertical direction): vertical diffraction limited;
 - Short pulse radiation: picoseconds to sub-picoseconds;
 - High reliability-availability operation: availability is better than 95%;
 - Ultra-low emittance: pushing for 1 nm-rad emittance by using damping wigglers.
3rd Generation Light Source

• ~ 2.0 GeV is the boarder line for VUV and X-ray machines;

(Note that 800 MeV vs. 2.5 GeV at NSLS)

• User number : ~ 20% (VUV) vs. 80% (X-ray)

• Required beam time /Experiment :
 ~ 80 % (VUV) vs. 20 % (X-ray)
SR Applications in Science

- Spatial Science vs. Time-Domain Science
- Spectroscopy Science
- Scattering Science
- Microscopy (Imaging) Science
- Science & Technology Fields:
 - Physics, Chemistry, Materials, Biology, Medicine,
 - Pharmaceutics, Environmental, Agriculture, Information Technology, Displays, Mechanical Engineering
 (almost all fields of Science and Technology)
Applications of PLS in Science and Industry

Users’ publications: ca. 900
Average Impact Factor: 3.8

Accepted Proposals/year: 800-850
Acceptance Rate/year: 50-70%
Users/year: 3,000
(came to PLS for exps.)
• There are dramatic increased demands from life science research, for example, big three statistics (ESRF, APS, Spring-8) in structural biology.

• One may note that cases of PLS and TLS are also outstanding results.

• The overall users are about 100,000 in the world.
ESRF Scientific Output

863 refereed publications in 2000
(registered – > 85% are “real” ESRF publications)

1201 refereed publications in 2001 (registered)
 ~ 40 papers in NATURE and SCIENCE
 ~ 50 papers in Physical Review Letters/Europhysics Letters
 ~ 90 papers in Physical Review

1106 refereed publications in 2002 (registered)

1206 refereed publications in 2003 (registered)
APS scientific impact increasing (by the numbers)

Selected high-impact stats

<table>
<thead>
<tr>
<th>Journal</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>7</td>
<td>6</td>
<td>14</td>
</tr>
<tr>
<td>All Nature</td>
<td>32</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>PRL</td>
<td>21</td>
<td>27</td>
<td>37</td>
</tr>
<tr>
<td>Science</td>
<td>11</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>PNAS</td>
<td>33</td>
<td>44</td>
<td>43</td>
</tr>
</tbody>
</table>

58% journal papers with impact factor >3.5 (2006)

3411 unique users in 2007

2006 Protein Data Bank deposits
Spectacular growth of structural biology

Advent of X-ray SR sources
ESRF, APS, SPring8, etc.

X-ray sources, ICFA Seminar, SNAL, October 2008, L. Rivkin, PSI & EPFL

Cheiron School-2009
Scientific Demands

Coherency
 Atomic and nanoscale imaging (Cells & Viruses, Nano-materials etc.), Others
Femto-second science
 Real-time reaction with high repetition rate
 (Chemical reaction, Photo-induced phase transition etc.)
Nano beam
 Condensed matter physics under extreme conditions

Performances

Brilliance : brighter by 2 orders
Pulse width : shorter by 2 orders
 compared to those of 3rd generation SR

New Light Source

• X-Ray Free Electron Laser (XFEL)
• Energy Recovery Linear-Accelerator (ERL)

4th Generation SR
X-Ray Free Electron Laser (XFEL)

Self Amplification of Spontaneous Emission (SASE)
LCLS, Stanford, 2009
(First XFEL demonstration on April 10, 2009)

Beam Energy: 15 GeV
Facility Length: 2 km

SP8-XFEL, SPring-8, 2010

Beam Energy: 8 GeV
Facility Length: 0.7 km, 390 M$

E-XFEL, Hamburg, DESY, 2014

Beam Energy: 20 GeV
Facility Length: 3 km, 1500 M$

XFEL Facilities in the World
PAL XFEL (proposed)

PAL XFEL (X-ray Free Electron Laser) Facility (4th Generation)

(1) Energy: 10 GeV (0.1 nm λ)
(2) Beamlines: 3 X-ray + 3 VUV BLs
(3) Budget: 400 M$
(4) Construction: 4 yrs (2011-2014)

- Coherent X-ray Beam
- Super-high Beam Flux
- Nanoscale Beam Size
- Femtosecond Pulse X-ray Beam
Next (4th) Generation Synchrotron Facilities: XFEL

Current Projects:
1. LCLS – SLAC (Stanford, USA) (in commissioning, 2009)
2. SCSS – SPring-8 (Hyogo, Japan) (2006-2011) (in construction)

Future Projects:
4. PAL XFEL – PAL, Pohang, Korea (2011-2014)
5. XFELO – Argonne, Illinois, USA (Small Size/VUV)
6. PSI XFEL – PSI, Villigen, Switzerland
7. FERMI-ELETTRA, Trieste, Italy
8. Arc en Ciel – LAL, Orsay, France
9. WiFEL – Madison, Wisconsin, USA
10. Soft X-Ray – Berkeley, CA, USA
11. SDUV-FEL – Shanghai, PRC
Energy Recovery Linac (ERL)
PF(KEK) - ERL

At the case of 8 keV photon energy

<table>
<thead>
<tr>
<th></th>
<th>PF-ERL undulator @ 5 GeV</th>
<th>SPring-8 undulator @ 8 GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam current</td>
<td>100 mA</td>
<td>100 mA</td>
</tr>
<tr>
<td>Undulator length</td>
<td>30 m</td>
<td>5 m</td>
</tr>
<tr>
<td>Source size (μm)</td>
<td>horizontal 37.8, 18.2</td>
<td>892, 892</td>
</tr>
<tr>
<td></td>
<td>vertical 37.8, 18.2</td>
<td>22.8, 10.6</td>
</tr>
<tr>
<td>Source div. (μrad)</td>
<td>horizontal 4.1, 9.8</td>
<td>37.4, 38.4</td>
</tr>
<tr>
<td></td>
<td>vertical 4.1, 9.8</td>
<td>4.3, 10</td>
</tr>
<tr>
<td>Beam size @ 50 m (μm)</td>
<td>horizontal 244, 510</td>
<td>2761, 2813</td>
</tr>
<tr>
<td></td>
<td>vertical 244, 510</td>
<td>236, 509</td>
</tr>
<tr>
<td>Average brilliance (ph/s/0.1%/mm²/mr²)</td>
<td>6.0×10²³, 7.6×10²²</td>
<td>2.2×10²¹, 5.0×10²⁰</td>
</tr>
<tr>
<td>% beam coherence</td>
<td>19, 15</td>
<td>0.14, 0.13</td>
</tr>
</tbody>
</table>
Functions of XFEL (SASE), XFEL-O & ERL

<table>
<thead>
<tr>
<th></th>
<th>SR</th>
<th>peak brilliance</th>
<th>repetition rate (Hz)</th>
<th>coherent fraction</th>
<th>bunch width (ps)</th>
<th># of BLs</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>XFEL</td>
<td>XFEL (SASE)</td>
<td>~10^{22-24}</td>
<td>~10^{33}</td>
<td>100(^\circ)</td>
<td>0.1</td>
<td>few</td>
<td>One-shot measurement</td>
</tr>
<tr>
<td></td>
<td>XFEL-O (Option)</td>
<td>~10^{27}</td>
<td>~10^{33}</td>
<td>~1M</td>
<td>1</td>
<td>few</td>
<td>Single mode FEL</td>
</tr>
<tr>
<td></td>
<td>ERL</td>
<td>~10^{23}</td>
<td>~10^{26}</td>
<td>1.3G</td>
<td>0.1 to 1</td>
<td>~30</td>
<td>Non-perturbed measurement</td>
</tr>
<tr>
<td></td>
<td>3(^{rd})-SR</td>
<td>~10^{20-21}</td>
<td>~10^{22}</td>
<td>~500M</td>
<td>0.1%</td>
<td>10 to 100</td>
<td>Non-perturbed measurement</td>
</tr>
</tbody>
</table>

(brilliance: photons/mm\(^2\)/mrad\(^2\)/0.1\%/s @ 10 keV)
Applications of XFEL In Science

XFEL ERL
- Coherent beam source
- Higher flux beam source
- Smaller size beam source
- Pulse beam source (~ fs)

Ultra-small
- Nature
 - Flea
 - Human hair ~30 μm wide
 - Red blood cells & white cell ~5 μm
 - Virus ~200 nm
- Technology
 - Head of a pin ~1 mm
 - Micro gears: 10 - 100 μm diameter
 - DVD track: 1 μm Electrodes connected with nanotubes

Ultra-fast
- Nature
 - Hydrogen transfer time in molecules is ~ fs
 - Spin processes in 1 Tesla field is 10 fs
 - Shock wave propagates by 1 atom in ~100 fs
 - Bohr period of valence electron is ~1 fs
- Technology
 - Computing time per bit is ~1 ns
 - Optical network switching time per bit is ~100 ps
 - Magnetic recording: time per bit is ~2 ms
 - Laser pulseSwitched current switch ~ fs

Average Brilliance [phot. (sec. - mad)^2, mm^-2, 0.1% basin]

- 4th Generation (XFEL, ERL)
- 3rd Generation
- 2nd Generation
- 1st Generation

X-ray Tube

- Years: 1900, 1950, 2000
Summary and Conclusions

- The development of third generation light source is still active and growing. There will be about 8 new ones operational before 2015.

- Intermediate energy light sources, such as Diamond, SOLEIL, ASP, Indus-2, ALBA, SSRF, CANDLE, NSLS-II, TPS, MAX-IV have been the focus of the recent development, the cost-effective feature makes them very suitable for meeting regional scientific needs of doing cutting-edge studies in various fields.

- Future development is very promising, not only the high energy physics machines will be converted to advanced light sources, like PRTRA-III and PEP-X, but also the ultimate storage ring light source is also very competitive.

- In the next few years, 4th generation facilities (XFEL) will be in operational, and one may expect unforeseen results. ERL and XFELO are other new approaches in competing with the 4th generation machines.

- Users are very much diversified and expanding rapidly to other research areas.
1. Research Fields

<Polymer Physics>
- Polymer chain conformation
- Structures and morphology
- Nanostructuring
- Electric, dielectric, optical, thermal, mechanical properties
- Sensor properties
- Surface, interfaces

<Polymer Synthesis>
- Functional polymers
- Structural polymers
- Polypeptides, DNA, RNA

2. Group Members (25)
- 1 Postdoctoral Fellow
- 15 Ph.D. candidates
- 1 Undergraduates
- 2 Technicians
- 2 Secretaries
- 4 Scientists (PLS: Coworkers)

http://www.postech.ac.kr/chem/mree

♦ Polymers for Microelectronics, Displays, & Sensors
♦ Polymers for Implants & Biological Systems
♦ Proteins & Polynucleic acids (DNA, RNA)

Polymer Synthesis & Physics Group

M. Ree Cheiron School-2009
Thank you very much for your attention !!!
3rd Generation SR Facilities (1)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Location</th>
<th>Energy (GeV)</th>
<th>Operation Year (Status)</th>
<th>Beamline</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>BM</td>
</tr>
<tr>
<td>ALS</td>
<td>USA</td>
<td>1.9</td>
<td>1993 (Operation)</td>
<td>27</td>
</tr>
<tr>
<td>ESRF</td>
<td>France</td>
<td>6.0</td>
<td>1993 (Operation)</td>
<td>13</td>
</tr>
<tr>
<td>NSRRC (TLS)</td>
<td>Taiwan</td>
<td>1.5</td>
<td>1993 (Operation)</td>
<td>26</td>
</tr>
<tr>
<td>ELETTRA</td>
<td>Italy</td>
<td>2.0/2.4</td>
<td>1994 (Operation)</td>
<td>8</td>
</tr>
<tr>
<td>PLS</td>
<td>Korea</td>
<td>2.5</td>
<td>1995 (Operation)</td>
<td>21</td>
</tr>
<tr>
<td>APS</td>
<td>USA</td>
<td>7.0</td>
<td>1996 (Operation)</td>
<td>21</td>
</tr>
<tr>
<td>SPring-8</td>
<td>Japan</td>
<td>8.0</td>
<td>1997 (Operation)</td>
<td>38</td>
</tr>
<tr>
<td>MAX-II</td>
<td>Sweden</td>
<td>1.5</td>
<td>1997 (Operation)</td>
<td>2</td>
</tr>
<tr>
<td>LNLS-II</td>
<td>Brazil</td>
<td>1.37</td>
<td>1997 (Operation)</td>
<td>11</td>
</tr>
<tr>
<td>Siberia-II</td>
<td>Russia</td>
<td>2.5</td>
<td>1999 (Operation)</td>
<td>11</td>
</tr>
<tr>
<td>BESSY-II</td>
<td>Germany</td>
<td>1.7</td>
<td>1999 (Operation)</td>
<td>22</td>
</tr>
</tbody>
</table>

3rd Generation?

Synchrotron light sources optimise the intensity of the light by incorporating long straight sections into the storage ring for ‘insertion devices’ such as undulator and wiggler magnets.
3rd Generation SR Facilities (2)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Location</th>
<th>Energy (GeV)</th>
<th>Circum. (m)</th>
<th>Operation Year (Status)</th>
<th>Beamline</th>
</tr>
</thead>
<tbody>
<tr>
<td>NewSUBARU</td>
<td>Japan</td>
<td>1.5</td>
<td>118.7</td>
<td>2000 (Operation)</td>
<td>6 3 9</td>
</tr>
<tr>
<td>SLS</td>
<td>Switzerland</td>
<td>2.4-2.7</td>
<td>288</td>
<td>2001 (Operation)</td>
<td>6 9 15</td>
</tr>
<tr>
<td>ANKA</td>
<td>Germany</td>
<td>2.5</td>
<td>110.4</td>
<td>2002 (Operation)</td>
<td>1 12 13</td>
</tr>
<tr>
<td>CLS</td>
<td>Canada</td>
<td>2.9</td>
<td>170.88</td>
<td>2003 (Operation)</td>
<td>4 5 9</td>
</tr>
<tr>
<td>SPEAR-III</td>
<td>USA</td>
<td>3.0</td>
<td>234</td>
<td>2004 (Operation)</td>
<td>10 23 33</td>
</tr>
<tr>
<td>SAGA-LS</td>
<td>Japan</td>
<td>1.4</td>
<td>75.6</td>
<td>2005 (Operation)</td>
<td>4 0 4</td>
</tr>
<tr>
<td>AS</td>
<td>Australia</td>
<td>3.0</td>
<td>216</td>
<td>2007 (Operation)</td>
<td>8 1 9</td>
</tr>
<tr>
<td>Diamond</td>
<td>UK</td>
<td>3.0</td>
<td>561.6</td>
<td>2007 (Operation)</td>
<td>2 11 13</td>
</tr>
<tr>
<td>SOLEIL</td>
<td>France</td>
<td>2.75</td>
<td>354.1</td>
<td>2007 (Operation)</td>
<td>8 19 27</td>
</tr>
<tr>
<td>Indus-II</td>
<td>India</td>
<td>2.5</td>
<td>172.5</td>
<td>2007 (Operation)</td>
<td>8 19 27</td>
</tr>
<tr>
<td>SSRF</td>
<td>China</td>
<td>3.5</td>
<td>432</td>
<td>2009 (Operation)</td>
<td>2 5 7</td>
</tr>
</tbody>
</table>
3rd Generation SR Facilities (3)

<table>
<thead>
<tr>
<th>Facility</th>
<th>Location</th>
<th>Energy (GeV)</th>
<th>Circum. (m)</th>
<th>Operation Year (Status)</th>
<th>Beamline</th>
</tr>
</thead>
<tbody>
<tr>
<td>PETRA-III</td>
<td>Germany</td>
<td>6.0</td>
<td>2304</td>
<td>2009 (Commissioning)</td>
<td></td>
</tr>
<tr>
<td>ALBA</td>
<td>Spain</td>
<td>3.0</td>
<td>268.8</td>
<td>Construction</td>
<td>BM 2 ID 3 TOTAL 5</td>
</tr>
<tr>
<td>SESAME</td>
<td>Jordan</td>
<td>2.5</td>
<td>133.12</td>
<td>Construction</td>
<td>BM 3 ID 3 TOTAL 6</td>
</tr>
<tr>
<td>CANDLE</td>
<td>Armenia</td>
<td>3.0</td>
<td>216</td>
<td>Construction</td>
<td>BM 4 ID 2 TOTAL 6</td>
</tr>
<tr>
<td>MAX-IV</td>
<td>Sweden</td>
<td>1.5/3.0</td>
<td>287.2</td>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td>NSLS-II</td>
<td>USA</td>
<td>3.0</td>
<td>780</td>
<td>Construction</td>
<td></td>
</tr>
<tr>
<td>TPS</td>
<td>Taiwan</td>
<td>3.0</td>
<td>518.4</td>
<td>Construction</td>
<td></td>
</tr>
</tbody>
</table>