Coherence

Tsuneaki Miyahara, Japan Women’s Univ.

1) Description of light in the phase space

First-order spatial coherence: Experiments
First -order temporal coherence
Description of light in the 6-dimensional phase space
2) Characteristics of undulator radiation
3) Second-order coherence and photon statistics

Experiments: two-photon correlation
4) Coherence and density matrix

Observation of subspace, decoherence
5) Outlook
I. Description of light in the $\left(x, x^{\prime}, y, y^{\prime}, \omega, t\right)$ space

Trick:
 Describe light geometrically and introduce uncertainty principle of light (Fourier limit)

$\omega-t$ space is treated as same as the position momentum space

$$
\binom{X_{1}}{X_{1}^{\prime}}=\left(\begin{array}{ll}
1 & 1 \\
X_{1} & 1 \\
0 & 1 \\
X_{0}^{\prime} \\
0
\end{array}\right)
$$

$$
\binom{X_{1}}{X_{1}^{\prime}}=\left(\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right)\left(\begin{array}{c}
X_{0} \\
0 \\
X^{\prime} \\
0
\end{array}\right)
$$

Diffraction limited beam

Because of uncertainty principle the minimum area of the ellipse $=\lambda / 4$

> Downsizing the beam makes the beam divergence larger

Gaussian beam: Beam with standard deviation of distribution described by an ellipse

Conservation of the emittance of diffraction limitted beam

Slit diffraction

Asymmetric Bragg reflection

First- order spatial coherence

Assuming $\Delta \omega=0$

Young's double slit experiment

Contrast: first-order coherence

Figure 4.4: Side view of the Young's interferometer.

Figure 4.5: Design of the monochromator.

Y. Takayama (Doctor theses)

Figure 5.5: \quad The interference patterns for $E=100 \mathrm{eV}$ at BL-12A. The direction of the double slit is vertical.

Undulator radiation

Figure 5.15: The interference patterns for $E=100 \mathrm{eV}$ at BL-28A. The direction of the double slit is vertical.

Figure 5.21: The interference patterns for the direct beam at BL-28A.
The direction of the double slit is vertical.

Where is the source point of undulator radiation?

When the electron emittance is much smaller than the diffraction limit,

Phase
space

Source point

First -order coherence depends on observation

Description in $\omega-t$ space

down-chirped pulse

up-chirped pulse

Temporal "Young' s" interference

"Dynamical" quantum beats (more degrees of freedom)

C_{1} : probability to come to 1 (time-dependent)
C_{2} : probability to come to 2(time-dependent)
C_{n} :probability to come to n (time-dependent)

* Special case: coherent motion
$C_{n} \propto(1 / n!)^{1 / 2} \exp (-i n \Omega t) A^{n}$
Experiments by P.Corkum et. al.

Phase relation between the two wave packet

Second-order coherence (Quantum mechanics)

First-order

correlation between amplitudes

Second-order

$$
\gamma_{(2)}=\frac{\left\langle a_{2}^{*} a_{1}^{*} a_{1} a_{2}\right\rangle}{\left\langle a_{1}^{*} a_{1}\right\rangle\left\langle a_{2}^{*} a_{2}\right\rangle}
$$

Correlation between intensities

If 1 and 2 are the same mode,

Influenced by first-order coherence

Measurement of Second-order coherence

Not simple

How can we eliminate the false correlation?
R. Z. Tai et al. Phys. Rev. A 60 (1999)

Two-photon correlation is proportional to wave packet length.

A : accidental correlation
Width of the slit D is changed to change γ_{12}
κ : duty ratio of signals
T_{R} : response time of detectors
τ_{c} :wave packet length
γ_{12} :first-order spatial coherence

Design of the Vacuum Chamber

Tai et. al., Rev. Sci. Instrum. 71 (2000) 1256.

Brief Diagram of the Electric Circuit

$$
\boldsymbol{V}_{x}=\boldsymbol{G}(\boldsymbol{D}) \boldsymbol{I}_{1} \boldsymbol{I}_{2}+\boldsymbol{N}_{x} \quad \begin{aligned}
& G(D) \text { is of the second order spatial coherence } \\
& \text { on the Fraunhofer slit. }
\end{aligned}
$$

Timing of Delay-Time Modulation and Control Voltage

Experimental Condition

- Photon Energy 55 eV (energy resolution $E / \Delta E \sim 10000$)
- Coherence in the horizontal direction was measured.
- Accumulation time for the measurement of the two-photon correlation for a slit width was about 4 hours.

Beam size Measurement

- Tungsten-wire scanner ($50 \mu \mathrm{~m}$ thickness) was used.
- Beamsize $\Sigma=60.9 \mu \mathrm{~m}$
(Gaussian Approximation $I(x)=I(0) \exp \left(-x^{2} /\left(2 \Sigma^{2}\right)\right)$)

An example of two-photon correlation

Characteristic of chaotic radiation
R.Z. Tai et. al., Phys. Rev. A60 3262 (1999)
Y. Takayama et al. ,J. Synchrotron Rad. 10303 (2003)

Density matrix with two spaces

subspace $\boldsymbol{a}, \boldsymbol{b}$: whole space: $|a\rangle \otimes|b\rangle$
vectors in $a: \alpha, \beta, \gamma, \delta \cdot \cdots$
vectors in $b: k, l, m, p, q \cdots$
density matrix $\rho: \quad \boldsymbol{\rho}=\sum_{\alpha \beta} \sum_{k l}|\alpha\rangle|k\rangle\langle l|\langle\beta| \rho_{\alpha \beta k l}$
with

$$
\sum_{\alpha k} \rho_{\alpha \alpha k k}=1
$$

1) expectation value of operator A

$$
\langle\mathrm{A}\rangle=\operatorname{Tr}(\mathbf{\rho} \mathrm{A})=\sum_{\gamma m} \sum_{\beta l} \rho_{\gamma \beta m l}\langle\beta|\langle l| A|m\rangle|\gamma\rangle
$$

When A does nothing on \boldsymbol{b} (not observing \boldsymbol{b})

$$
\langle\mathrm{A}\rangle=\sum_{l} \sum_{\beta \gamma} \rho_{\gamma \beta l l}\langle\beta| \mathrm{A}|\gamma\rangle=\sum_{k} \sum_{\alpha \beta} \rho_{\beta \alpha k k}\langle\beta| \mathrm{A}|\alpha\rangle
$$

Coherence and density matrix

When the space \boldsymbol{b} is not observed,

$$
\boldsymbol{\rho}_{a}=\operatorname{Tr}_{b} \boldsymbol{\rho}=\sum_{m} \sum_{\alpha \beta}|\alpha\rangle\langle\beta| \rho_{\alpha \beta m m}=\sum_{\alpha \beta}|\alpha\rangle\langle\beta|\left(\sum_{m} \rho_{\alpha \beta m m}\right)
$$

Here we define,

$$
\sum_{m} \rho_{\alpha \beta m m}=\rho_{\alpha \beta}^{b}
$$

Then we have,

$$
\boldsymbol{\rho}_{a}=\sum_{\alpha \beta} \rho_{\alpha \beta}^{b}|\alpha\rangle\langle\beta| \quad \text { and } \quad \boldsymbol{\rho}_{a}^{2}=\sum_{\alpha \beta \gamma} \rho_{\alpha \gamma} \rho_{\gamma \beta}|\alpha\rangle\langle\beta|
$$

Condition for coherence (pure state)

Example of decoherence

When $\quad|\psi\rangle=\frac{1}{\sqrt{2}}\left(|\alpha\rangle|R\rangle+e^{i \theta}|\beta\rangle|L\rangle\right)$

R : right polarized
L: left polarized

then

$\rho=|\psi\rangle\langle\psi|$
$=\frac{1}{2}\left(|\alpha\rangle|R\rangle\langle R|\langle\alpha|+|\beta\rangle|L\rangle\langle L|\langle\beta|+e^{-i \theta}|\alpha\rangle|R\rangle\langle L|\langle\beta|+e^{i \theta}|\beta\rangle|L\rangle\langle R|\langle\alpha|\right)$
therefore

$$
\operatorname{Tr}_{\alpha \beta} \rho=\frac{1}{2}(|R\rangle\langle R|+|L\rangle\langle L|)
$$

Non-polarized light

$$
\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)^{2}=\left(\begin{array}{ll}
1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2
\end{array}\right)
$$

Pure state

$$
\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & 1 / 2
\end{array}\right)^{2}=\left(\begin{array}{cc}
1 / 4 & 0 \\
0 & 1 / 4
\end{array}\right)
$$

Mixed state

Conclusion of density matrix consideration:
Partial observation of the system can reduce the coherence in subspace.

Examples:

1) If we observe light coming from one slit in the Young' s double slit experiment, then no interference.
2) If we do not observe the photon field in the photonmatter interaction, the expectation value of the dipole moment of the matter is zero. (Appendix 2)

Glauber's coherent satate

$$
\begin{aligned}
& |\alpha\rangle=\exp \left(-\frac{|\alpha|^{2}}{2}\right) \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle \\
& \quad a|\alpha\rangle=\alpha|\alpha\rangle
\end{aligned}
$$

$$
E \propto a^{*}+a
$$

represents a classical electromagnetic wave, lasers.
Expectation value of the electric field: $\sin \omega t$

Outlook

Producrion of ultrashort pulse < 1 fsec

Electronics of the modulation technique to detect correlation

Results of two- photon correlation

Correlation rate
$1: 0.38(\pm 0.20) \rightarrow$ Compressed to 38\%

Summary

First-order coherence

1) First-order coherence depends on how we observe the light.
2) First-order coherence can be improved with sacrifice of intensity. The loss of intensity is smaller when the source has smaller emittance.
3) First-order spatial coherence is easily observed in Young's experiments.
4) The idea of first-order spatial coherence can be applied to the $\omega-t$ space.
5) Observation of a part of the system could reduce the coherence., corresponding to tracing out the density matrix in a sub-space.

Second-order coherence

1) Measurement of two-photon correlation gives information of photon statistic and the wave packet length of a photon.
2) Using a tapered undulator and a double grating system, the wave packet length can be compressed.

Appendix 1: Time evolution

Hamiltonian: $\quad \mathrm{H}=\mathrm{H}_{a}+\mathrm{H}_{b}+\mathrm{H}_{a b}$
Eigen energies of H_{a} in $\boldsymbol{a}: E_{\alpha}$
Eigen energies of \mathbf{H}_{b} in \boldsymbol{b} : \boldsymbol{E}_{k}

$$
\begin{aligned}
& |\alpha\rangle=\exp \left(-\frac{i}{\hbar} E_{\alpha} t\right) \quad|k\rangle=\exp \left(-\frac{i}{\hbar} E_{k} t\right) \\
& \frac{d}{d t}\langle\mathrm{~A}\rangle=\operatorname{Tr}(\dot{\mathbf{\rho}} \mathrm{A})=\sum_{l} \sum_{\beta \gamma}\left\{\dot{\rho}_{\gamma \beta \| l}+\frac{i}{\hbar}\left(E_{\gamma}-E_{\beta}\right) \rho_{\gamma \beta \| l}\right\}\langle\beta| \mathrm{A}|\gamma\rangle
\end{aligned}
$$

If A does not observe subspace \boldsymbol{b},

$$
\frac{d}{d t}\langle\mathrm{~A}\rangle=\sum_{\beta \gamma}\left\{\dot{\rho}_{\gamma \beta}^{b}+\frac{i}{\hbar}\left(E_{\gamma}-E_{\beta}\right) \rho_{\gamma \beta}^{b}\right\}\langle\beta| \mathrm{A}|\gamma\rangle
$$

Appendix 2: broken symmetry operator

 space a: electronic system, (creation, annihilation operators) $c_{\alpha}^{+} \quad c_{\alpha}$ space b: bosonic system$$
a_{k}^{+} \quad a_{k}
$$

Interaction Hamiltonian:

$$
\mathrm{H}_{a b}=c_{\alpha}^{+} c_{\beta} a_{k}\langle\alpha| \mathrm{A}|\beta\rangle+\text { c.c. }
$$

Assuming correlation (entanglement)

$$
|\psi\rangle=\frac{1}{\sqrt{2}}(|e\rangle|n\rangle+|g\rangle|n+1\rangle)
$$

Then matrix element of A is,

$$
\begin{aligned}
& \rho_{\alpha \beta}^{b}=\sum_{l} \rho_{\alpha \beta l l}=0 \quad(\alpha \neq \beta) \\
& \langle\alpha| A|\alpha\rangle=0 \text { and }\langle\mathrm{A}\rangle=0 \quad \text { "dipole moment" is zero. }
\end{aligned}
$$

