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I . Description of light in the (x,xy,Yy , o, t) space

Trick:

Describe light
geometrically and
Introduce uncertainty
principle of light

( Fourier limit)

w1 space is treated as
same as the position —
momentum space
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Diffraction limited beam

Because of uncertainty principle the minimum area of
the ellipse =A/4

x’=dx/ds Downsizing the beam
" makes the beam

:/\: diffraction limited dlvergence Iarger
beam
> X

Gaussian beam: Beam with
standard deviation of
distribution described by an
ellipse



Conservation of the emittance of diffraction limitted beam
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Slit diffraction Asymmetric Bragg reflection
x’=(b(.‘/ds x’=dx/ds
4 A

|

Loss of intensity [\ Almost lossless
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First- order spatial coherence

Assuming Aw=0
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Figure 4.4: Side view of the Young’s interferometer.

Figure 4.5: Design of the monochromator.
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Y. Takayama ( Doctor theses) Undulator radiation
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Figure 5.5: The interference patterns for £ = 100 eV at BL-12A. The

direction of the double slit is vertical. .
Figure 5.15: The interference patterns for £ = 100 eV at BL-28A. The

direction of the double slit is vertical.



Arbitrary unit

Undulator radiation without monochromator

Figure 5.21:
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The interference patterns for the direct beam at BL-28A.

The direction of the double slit is vertical.
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Poor monochromaticity



Where is the source point of undulator radiation?

When the electron emittance is much smaller than the
diffraction limit,
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First -order coherence depends on observation

Source 1

Do they interfere 7

Source 2

Separate sources

AWA
WY,

Interfere!

Straight motion

[ The similar thing happens in ot space. J




Description in -t space
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up-chirped pulse




Temporal “Young’s” interference

"Dynamical” quantum beats (more degrees of freedom)

2) C,:probability to come to 1(time-dependent)
1) /\ C,:probability to come to 2(time-dependent)

C,:probability to come to n(time-dependent)

* Special case: coherent motion
C,o<c(1/n!)Y2exp(-inQt)A"

| £) Experiments by P.Corkum et. al.

Phase relation between the two wave packet



Second-order coherence (Quantum mechanics)

First-order

p

_ (aaaa,)

Second-order i <a;*a1><a;a2>
L

If 1 and 2 are the same mode,

Y2~

correlation
between
amplitudes

Correlation
between
intensities

<a*aa*a> —<a*a> .
, Influenced by first-order
<a*a> coherence



Measurement of Second-order coherence

Not simple

How can we eliminate the

c
S oc |1 | 5 A + K®‘712 ‘ false correlation?

R. Z. Tai et al. Phys. Rev. A 60 (1999)
Two-photon correlation is proportional to wave packet length.

A :accidental correlation
Width of the slit D is changed « :duty ratio of signals

to change y, Tr :response time of detectors
7. :wave packet length
71, :first-order spatial coherence



Design of the Vacuum Chamber
Side View I = . !

Fraunhofer Slit

| -
SR — /Mirror PMT

[ —

Mirror

Top View

[ Fraunhofer Slit (width D)
' Mirror Mirror Beam Splitter

] N =

\ Wire Scanner

SR

=

Tai et. al., Rev. Sci. Instrum. 71 (2000) 1256.



Brief Diagram of the Electric Circuit

I
Electrometer CFD TAC
PMT1 DC

Bias Tee Preamplifier Solid State Switch
PMT2 (40dB)
RF
i S
Electrometer!
I 5 624 nsec Delay

LT

Function Generator
(0.795 Hz square wave)

Ratemeter SCA
Digital Lockin
Amplifier

Vi = G(D) |1 l2+ N« G(D) is of the second order spatial coherence
on the Fraunhofer slit.




Timing of Delay-Time Modulation
and Control Voltage

Output Voltage of Function Generator (0.795Hz)

Coincidence Rate (input to the lockin amplifier)
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Experimental Condition

 Photon Energy 55 eV
(energy resolution E/AE ~ 10000)
 Coherence In the horizontal direction was
measured.

 Accumulation time for the measurement of
the two-photon correlation for a slit width

was about 4 hours.



Beam size Measurement

Intensity {Arh. Units)

| | |
-0.2 -0.1 0 0.1 0.2 0.3
Position (mm)

e Tungsten-wire scanner (50 um thickness) was used.
e Beamsize ~ =60.9 um
(Gaussian Approximation 1(x) = 1(0) exp(-x?/(2 £2)) )



An example of two-photon correlation

1 I I I I

Characteristic
of chaotic
radiation

_2 | | |
0 20 40 60 80 100

D (um)

R.Z. Tai et. al., Phys. Rev. A60 3262 (1999)
Y. Takayama et al. ,J. Synchrotron Rad.10 303 (2003)




Density matrix with two spaces

subspace a, b: whole space: |a)®|b)
vectorsin a:q, By, 0
vectors in b:k, I, m,p,q==--

density matrix p: [ p=> > |)|K)I|{B|Posu }

with e
Zpaakk — 1
ok

1)expectation value of operator A

[ (A)=Tr(pA) =33 o5 (B (1| Al ) j

ym  pl

When A does nothing on b (not observing b)

()= 53 o (BIAI7) = X T s (BlA)




Coherence and density matrix

When the space b is not observed,

b =Tip=3 3 |a) (Bl s =§\a><m[;paﬂmmj

m oaf

Here we define,
Zpaﬂmm = pzﬂ

Then we have,

.= Pule)(Bl  and  pi=2p,pu) B
af

afy

[ Condition for coherence (pure state) J

&> p. =9 <j> Pap = 2Py Pys
v




Example of decoherence
When  [y)=—(la)|R)+e”| 5)|L))

then
p=w){v

3R )L (o1l R) L+ 8) L) R

therefore

Tpo=3(R)R|+[L)(L|) E) [ Non-polarized light

12 12 (12 1/2 72 0 (Y4 0
12 12) "l12 12 0 12 |0 va

Pure state Mixed state

R: right polarized
L: left polarized




Conclusion of density matrix consideration:

Partial observation of the system can reduce the
coherence in subspace.

Examples:

1) If we observe light coming from one slit in the
Young’s double slit experiment, then no interference.

2) If we do not observe the photon field in the photon-
matter interaction, the expectation value of the dipole
moment of the matter is zero. (Appendix 2)



Glauber’ s coherent satate

o)=L 54

=0
a‘a>:a‘a>
Exca“+a

represents a classical electromagnetic wave, lasers.

Expectation value of the electric field: sinwt



Outlook

Producrion of ultrashort pulse <1 fsec

Undulator 1 Undulator 2
(IO (0 OO
(IO 00 OO T
- >

Microbuncher Radiator

Up-chirped

t = tO+A (a) - a)o)

Dispersive system
(double grating)

L J




Electronics of the modulation technigue to detect correlation

Double balanced mixer

DBM

II
Erectrometer [ |
DC
|: PMT1 .
Bias Tee
PMT2
[ -

Function Genetator
{11Hz square wave)

2nsecDelay

»

Solid State Switch

V

Digital lockin'

Amplifier

Detector



Vx (arb. unit)

Results of two- photon correlation

Without taper (non-chirped pulse)

—% =3 =& =
- N B O ® N

Vx (arb. unit)
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Summary

First-order coherence
1) First-order coherence depends on how we observe the light.
2) First-order coherence can be improved with sacrifice of intensity.

The loss of intensity is smaller when the source has smaller
emittance.

3) First-order spatial coherence is easily observed in Young’s
experiments.

4) The idea of first-order spatial coherence can be applied to the o—t
space.

5) Observation of a part of the system could reduce the coherence.,
corresponding to tracing out'the density matrix in a sub-space.

Second-order coherence

1) Measurement of two-photon correlation gives information of
photon statistic and the wave packet length of a photon.

2) Using a tapered undulator and a double grating system, the wave
packet length can be compressed.



Appendix 1. Time evolution
Hamiltonian: H=H,+H, +H_,
Eigen energies of H in a :E_

Eigen energies of H,in b:E,

o) = exp(—% Eatj k) = exp(—% Ektj
A =TGR =33y 1 (E ~E, o B1AL)

If A does not observe subspace b,

S (W) =2 1€ -, [B1AL)

By



Appendix 2: broken symmetry operator

space a: electronic system,
(creation, annihilation operators) ¢, c,

space b: bosonic system a, a
Interaction Hamiltonian:

H,, =c.ca (a|A|f)+c.c.
Assuming correlation (entanglement)

1
- 1
v)=—5()ln)+|g)ln+1)
Then matrix element of A Is,

:Zpa,b’ll =0 (a#p)

(a|Ala)=0 and (A)=0 “dipole moment "is zero.



