November 6, 2009: Cheiron School 2009 @ SPring-8

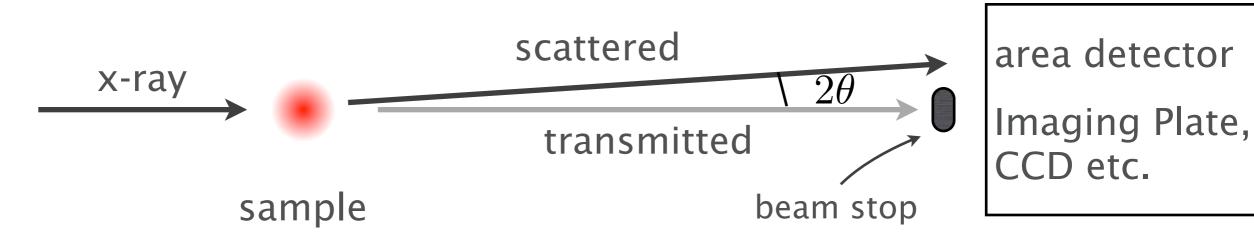
Small-Angle X-ray Scattering Basics & Applications

Yoshiyuki Amemiya and Yuya Shinohara
Graduate School of Frontier Sciences,
The University of Tokyo

Overview

- Introduction
 - What's SAXS ?
 - History
 - Application field of SAXS
- Theory
 - Structural Information obtained by SAXS
- Experimental Methods
 - Optics
 - Detectors
- Advanced SAXS
 - Microbeam, GI-SAXS, USAXS, XPCS etc...

What's Small-Angle X-ray Scattering?



Bragg's law: $\lambda = 2d \sin \theta$

small angle large structure (1 - 100 nm)

crystalline sample --> small-angle X-ray diffraction: SAXD solution scattering / inhomogeneous structure --> SAXS

History of SAXS (< 1936)

Krishnamurty (1930)

Hendricks (1932)

Mark (1932)

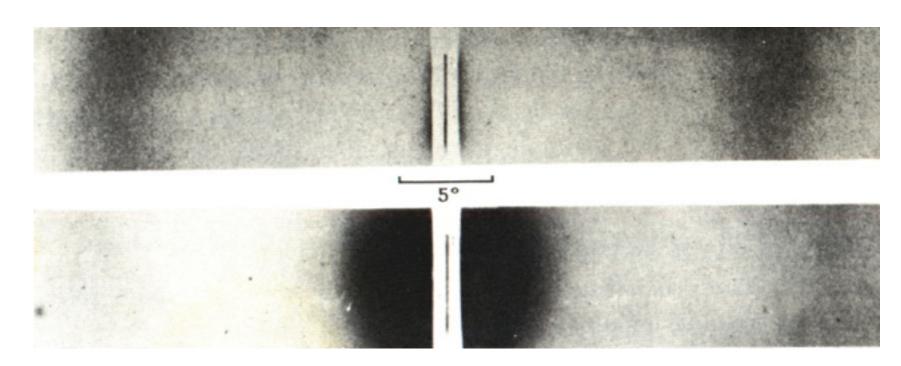
Warren (1936)

Observation of scattering

from powders, fibers, and colloidal dispersions

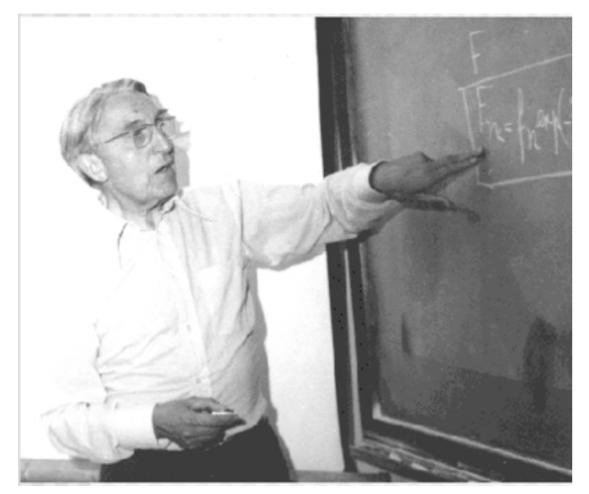


carbon black



Molten silica - silica gel

History (> 1936)



Single crystals of Al-Cu hardened alloy A. Guinier (1937, 1939, 1943)

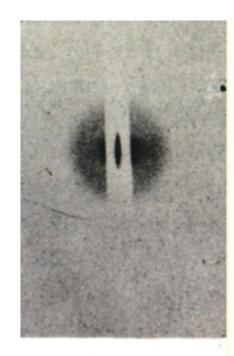
Interpretation of inhomogeneities in Al alloys "G-P zones", introducing the concept of "particle scattering" and formalism necessary to solve the problem of a diluted system of particles.

O. Kratky (1938, 1942, 1962)

G. Porod (1942, 1960, 1961)

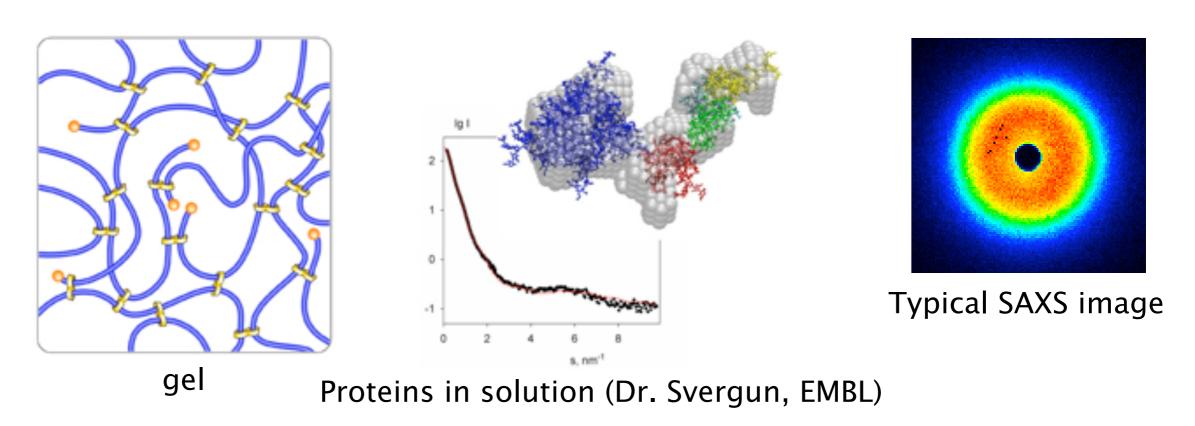
Description of dense systems of colloidal particles, micelles, and fibers.

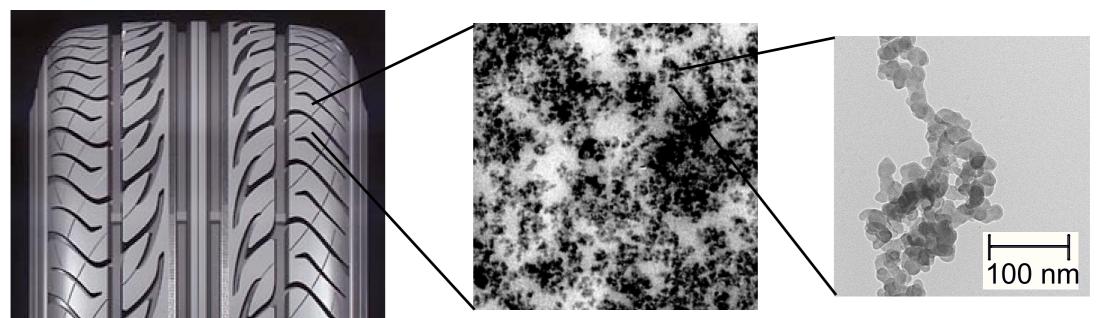
Macromolecules in solution.



Hemoglobin

Application of SAXS



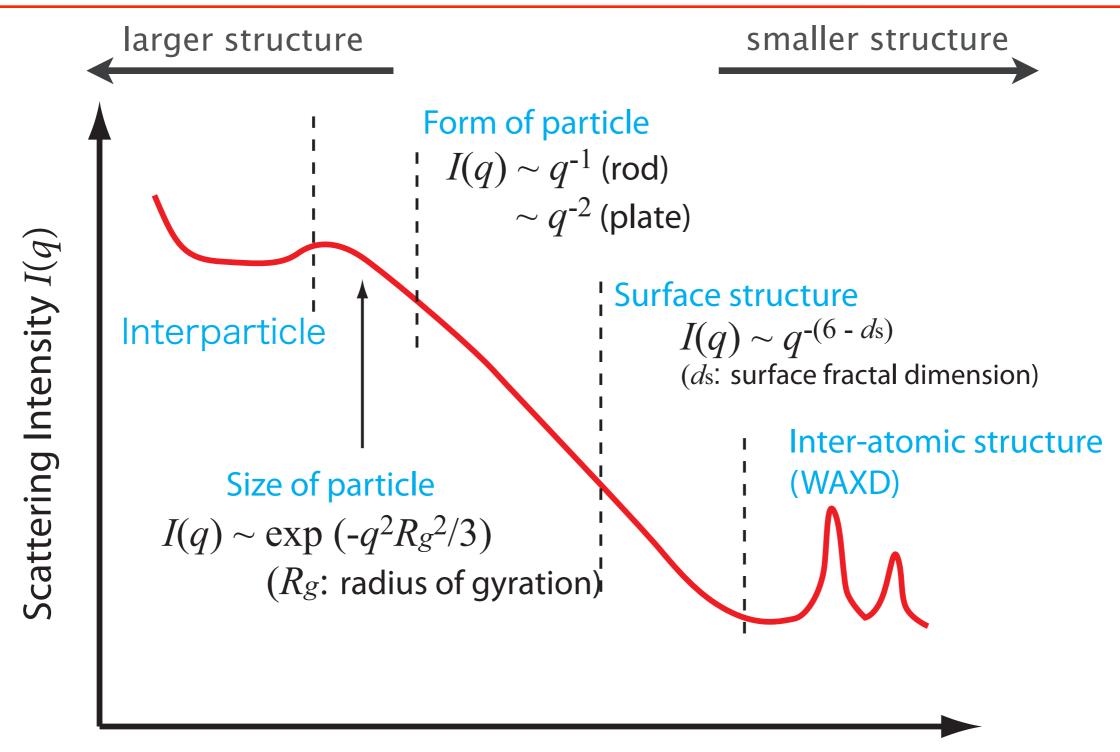


Nanocomposite

Application of SAXS

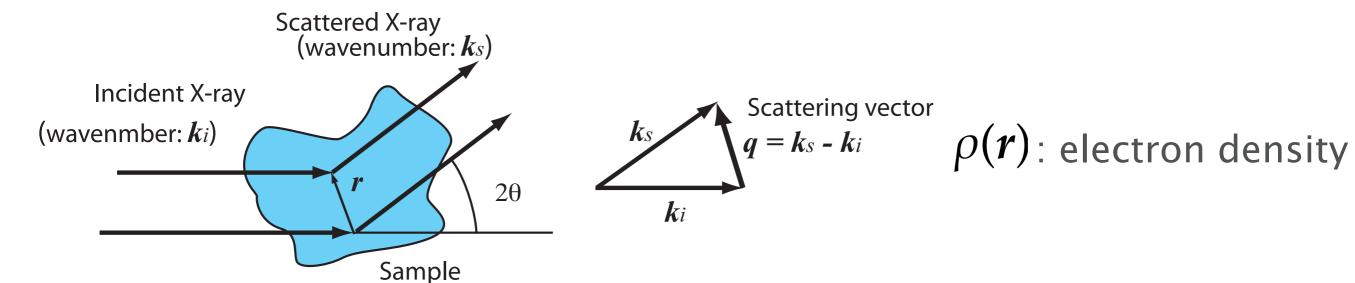
- Size and form of particulate system
 - Colloids, Globular proteins, etc...
- Inhomogeneous structure
 - Polymer chain, two-phase system etc.
- Distorted crystalline structure
 - Crystal of soft matter

SAXS of particulate system



Scattering angle 2θ or Scattering vector q $q = 4\pi \sin \theta / \lambda$

Basic of X-ray scattering



$$q = |\mathbf{q}| = 4\pi \sin \theta / \lambda$$

Amplitude of scattered X-ray

$$A(q) = \int_{V} \rho(r) \exp(-iq \cdot r) dr$$

Fourier transform of electron density

Scattering intensity per unit volume:
$$I(q) = \frac{A(q)A^*(q)}{V}$$

Correlation Function & Scattering Intensity

Correlation function of electron density per unit volume

$$\gamma(\mathbf{r}) = \frac{1}{V} \int_{V} \rho(\mathbf{r}') \rho(\mathbf{r} + \mathbf{r}') d\mathbf{r}' = \frac{1}{V} \frac{P(\mathbf{r})}{\text{Patterson Function}}$$
(Debye & Bueche 1949)

asymptotic behavior of the correlation function

$$\gamma(\mathbf{r}=0) = \langle \rho^2 \rangle$$
 $\gamma(\mathbf{r} \to \infty) \to \langle \rho \rangle^2$

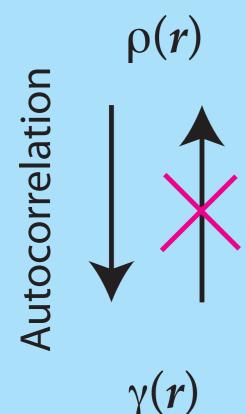
<u>Scattering Intensity: Fourier Transform of correlation function</u>

$$I(q) = \int_{V} \gamma(r) \exp(-iq \cdot r) dr$$

Real space and Reciprocal Space

Real Space

Electron Density

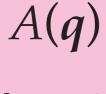


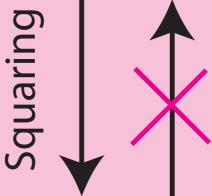
Autocorrelation Function Fourier Trans.

Inv. Fourier Trans.

Reciprocal Space

Scattering amplitude



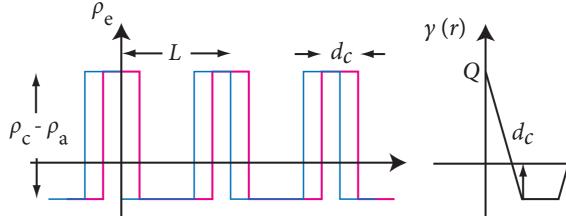


I(q)

Scattering Intensity

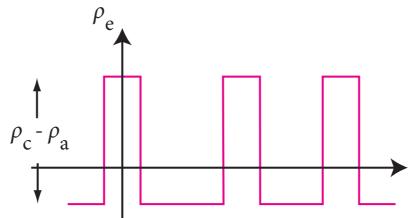
Diffraction from Lamellar Structure

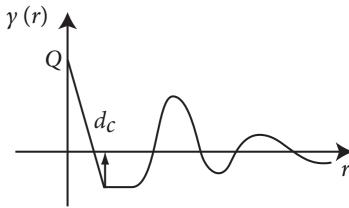
ideal ordering



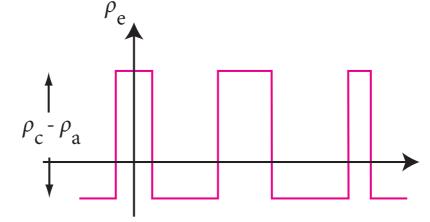
 $\frac{Q}{dc}$

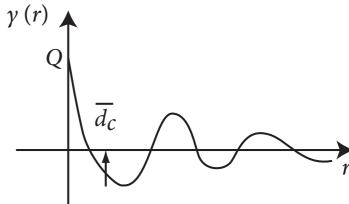
Long period changes.





Thickness of crystal changes.





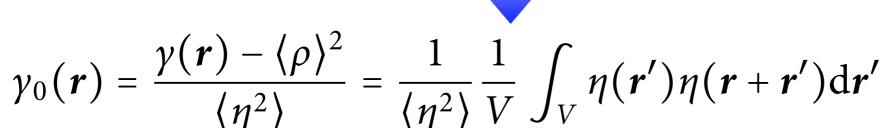
real space

autocorrelation

Normalized Correlation Function

Local electron density fluctuations: $\eta(\mathbf{r}) = \rho(\mathbf{r}) - \langle \rho \rangle$

average density fluctuaitons



substitution
$$I(q) = \int_{V} \gamma(r) \exp(-iq \cdot r) dr$$

$$I(\boldsymbol{q}) = \langle \eta^2 \rangle \int_{V} \gamma_0(\boldsymbol{r}) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \langle \rho \rangle^2 \delta(\boldsymbol{q})$$

Only the average density fluctuations contribute to the signal.

Not observable.

Invariant Q

Parseval's equality
$$\int_{V} I(q) \, \mathrm{d}q = (2\pi)^3 \langle \eta^2 \rangle$$
Parseval's equality
$$\int_{V} I(q) \, \mathrm{d}q = (2\pi)^3 \langle \eta^2 \rangle$$
Parseval's equality
$$A(q) \xrightarrow{\text{Fourier Trans.}} \eta(r)$$

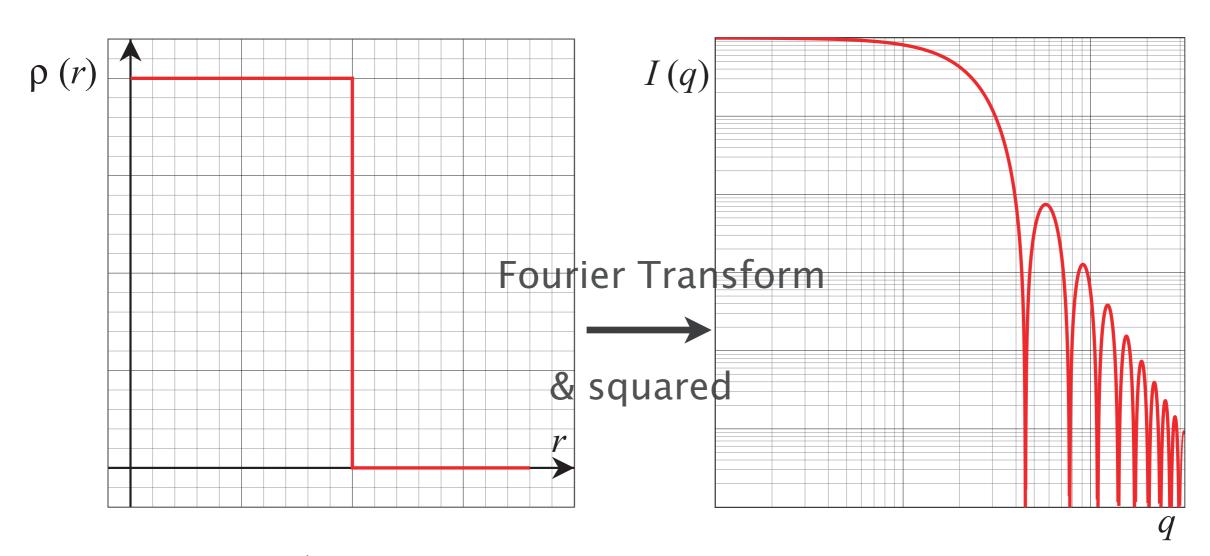
$$A\pi \int I(q) q^2 \, \mathrm{d}q$$

$$\int_{V} \gamma_0(r) \, \mathrm{e}^{-\mathrm{i}q \cdot r} \, \mathrm{d}r + \langle \rho \rangle^2 \delta(q)$$
Omitted.
$$\int_{V} I(q) \, \mathrm{d}q = (2\pi)^3 \langle \eta^2 \rangle$$

$$\int_{V} |A(q)|^2 \, \mathrm{d}q = (2\pi)^3 \int_{V} |\eta(r)|^2 \, \mathrm{d}r$$

Invariant:
$$Q = \int_0^\infty I(q)q^2 dq = 2\pi^2 \langle \eta^2 \rangle$$

Spherical sample

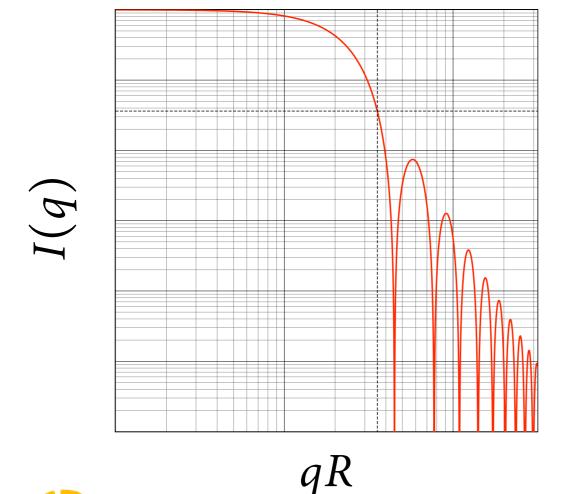


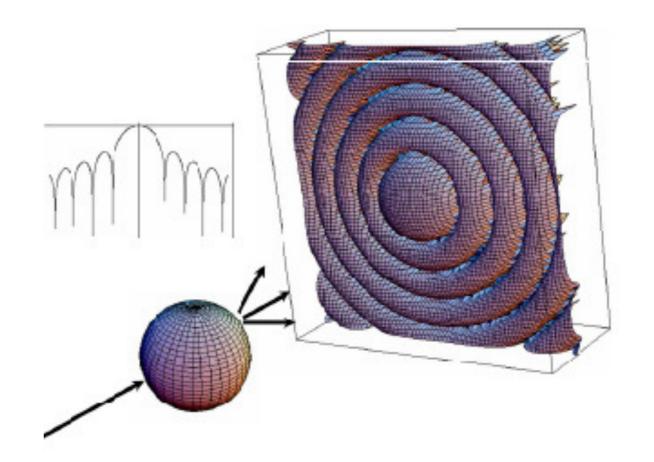
$$\rho(r) = \begin{cases} \Delta \rho & r < R \\ 0 & \text{else} \end{cases}$$

$$I(q) = \frac{(\Delta \rho)^2 V_{\text{particle}}^2}{V} \left[3 \frac{\sin qR - qR \cos qR}{(qR)^3} \right]$$

Homogeneous sphere

$$I(q) = \frac{(\Delta \rho)^2 V_{\text{particle}}^2}{V} \left[3 \frac{\sin qR - qR \cos qR}{(qR)^3} \right]$$



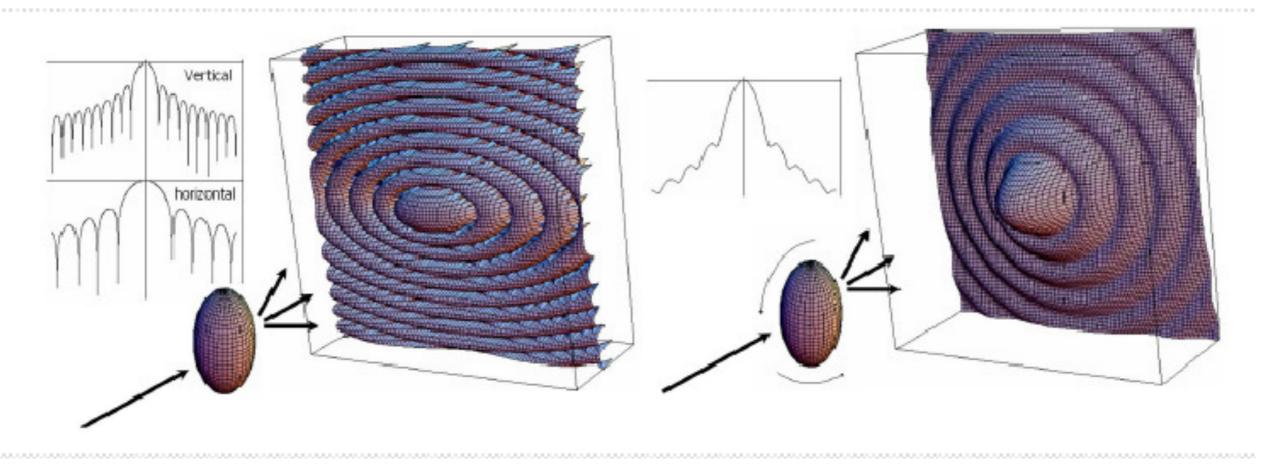


isotropic scattering

Homogeneous elipsiod

Fixed particle

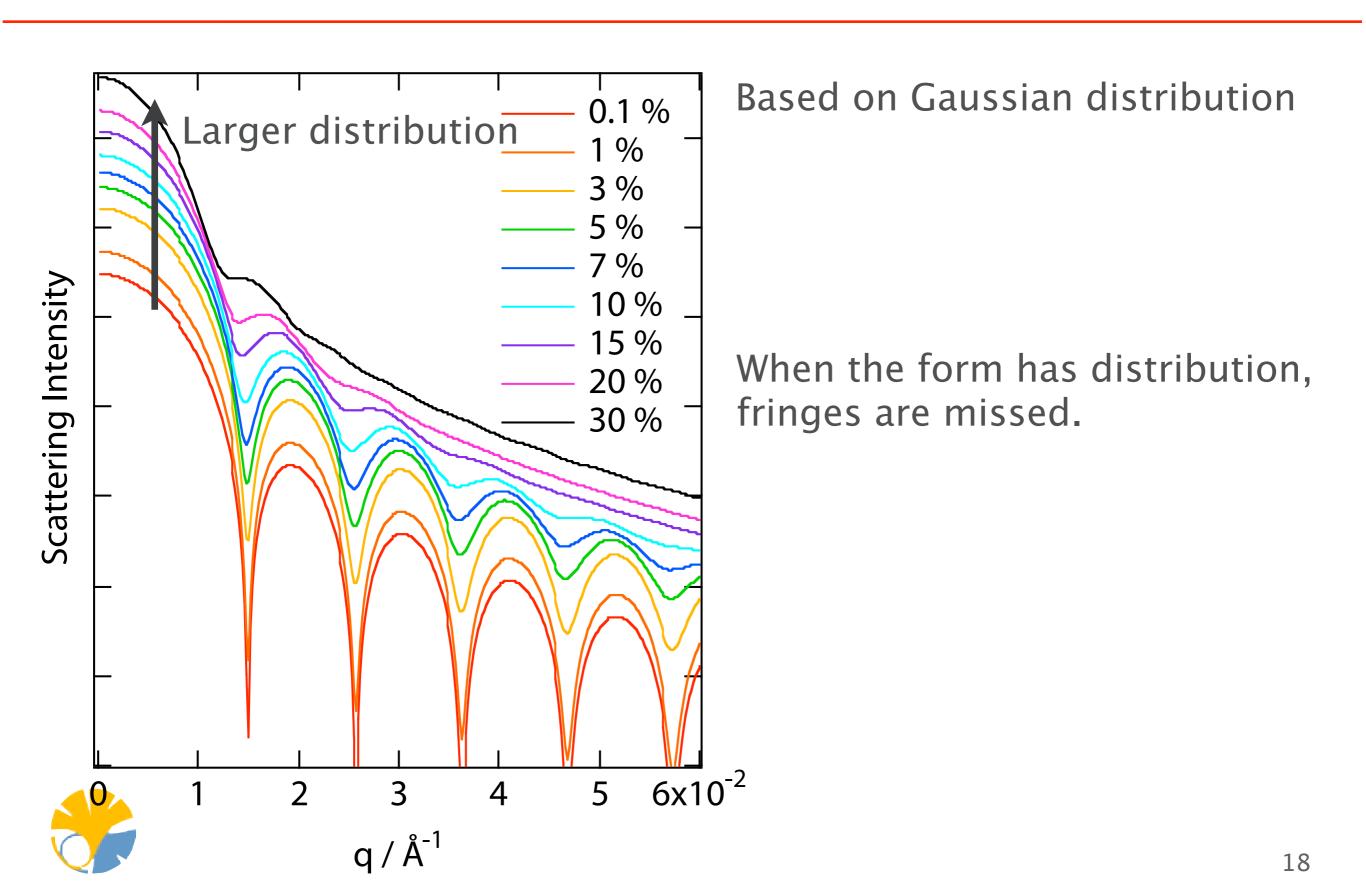
Random orientation



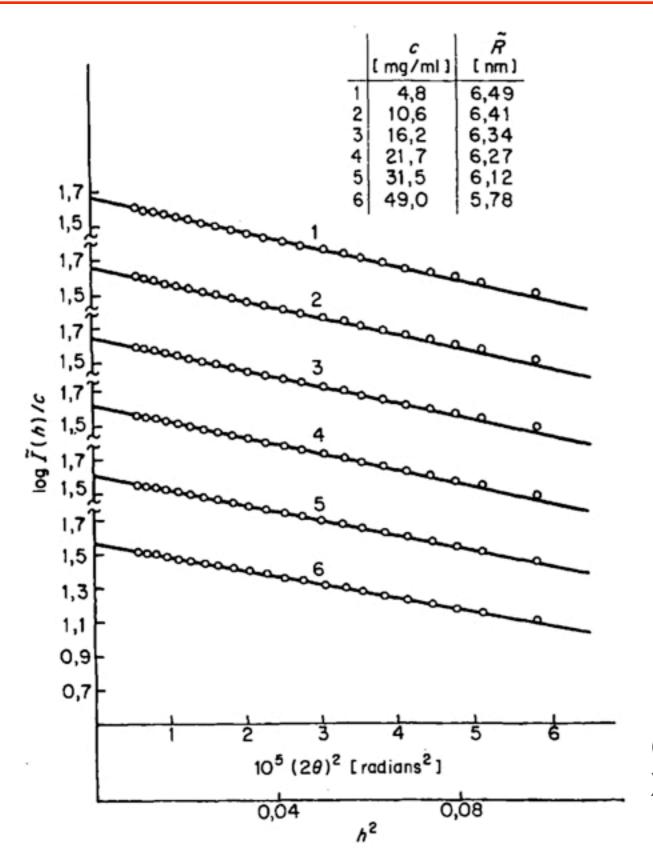
anisotropic scattering

isotropic scattering

Size distribution



Radius of Gyration -- Guinier Plot



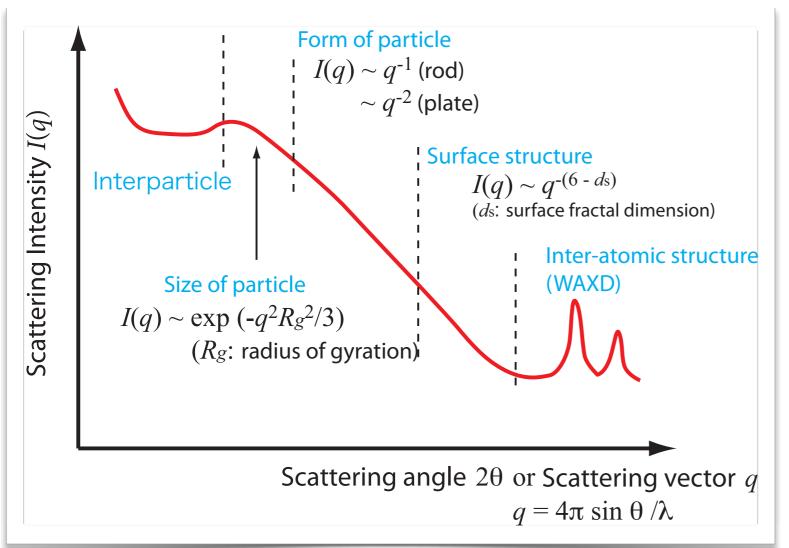
$$I(q) \sim \exp\left(-\frac{q^2 R_g^2}{3}\right)$$

$$\log (I(q)) = -\frac{q^2 R_g^2}{3}$$

Guinier plot: $\log (I(q)) \text{ vs } q^2$

O. Glatter & O. Kratky ed., "Small Angle X-ray Scattering", Academic Press (1982).

Structure Factor & Form Factor



Separation of S(q) & F(q)

Everlasting issue

(especially, for non-crystalline sample)

Proposed remedy:

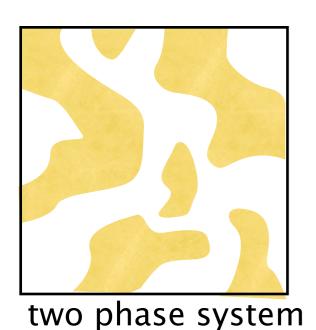
· GIFT (Generalized Inverse Fourier Trans.) by O. Glatter

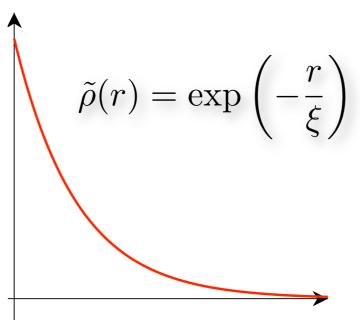
Scattering from Inhomogeneous Structure

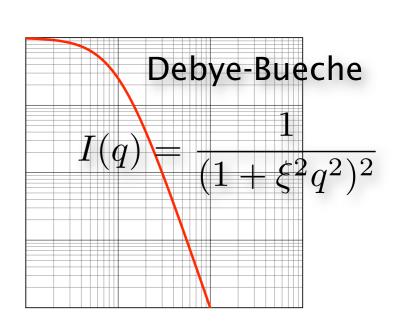
Electron Density

Autocorrelation Function

Scattering Intensity

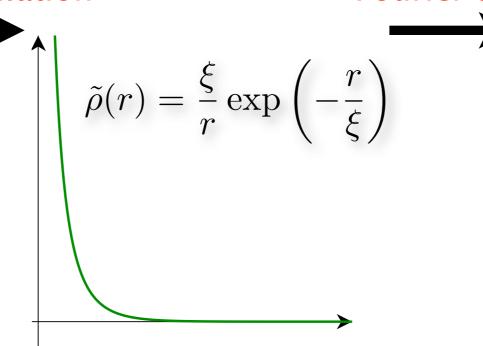


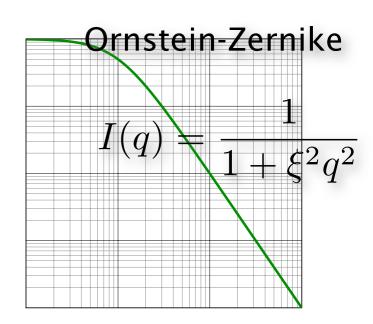




Autocorrelation

Fourier trans.





Two-phase system

Phase 1: ρ_1 , volume fraction ϕ Phase 2: ρ_2 volume fraction 1 - ϕ

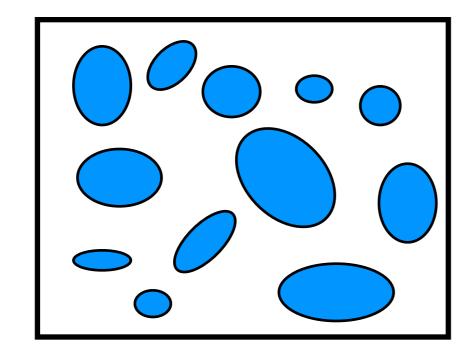
$$A(\boldsymbol{q}) = \int_{\phi V} \rho_{1} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \int_{(1-\phi)V} \rho_{2} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$

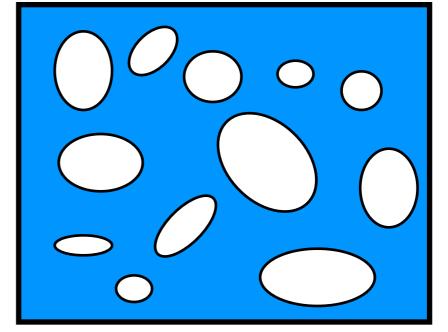
$$= \int_{\phi V} (\rho_{1} - \rho_{2}) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_{2} \int_{V} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$

$$A(\boldsymbol{q}) = \int_{V} \Delta \rho e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_{2} \delta(\boldsymbol{q})$$

$$= \int_{\phi V} (\rho_{1} - \rho_{2}) e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_{2} \int_{V} e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r}$$

$$A(\boldsymbol{q}) = \int_{V} \Delta \rho \, e^{-i\boldsymbol{q}\cdot\boldsymbol{r}} d\boldsymbol{r} + \rho_{2} \delta(\boldsymbol{q})$$





Babinet's principle

Two complementary structures produce the same scattering.

Two-phase system -- cont.

Averaged square fluctuation of electron density

$$\langle \eta^2 \rangle = \phi (1 - \phi) (\Delta \rho)^2$$
 where $\Delta \rho = \rho_1 - \rho_2$

$$I(q) = 4\pi \langle \eta^2 \rangle \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{qr} r^2 dr$$

$$I(q) = 4\pi \phi (1 - \phi) (\Delta \rho)^2 \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{qr} r^2 dr$$

$$Q = \int_0^\infty I(q)q^2 dq = 2\pi^2 \phi (1 - \phi)(\Delta \rho)^2$$

Invariant: does not depend on the structure of the two phases but only on the volume fractions and the contrast between the two phases.

Porod's law

For a sharp interface, the scattered intensity decreases as q⁻⁴.

$$I(q) \rightarrow (\Delta \rho)^2 \frac{2\pi}{q^4} \underline{S/V}$$
internal surface area

Combination of Porod's law & Invariant

$$\pi \cdot \frac{\lim_{q \to \infty} I(q)q^4}{Q} = \boxed{\frac{S}{V}}$$

surface-volume ratio

important for the characterization of porous materials

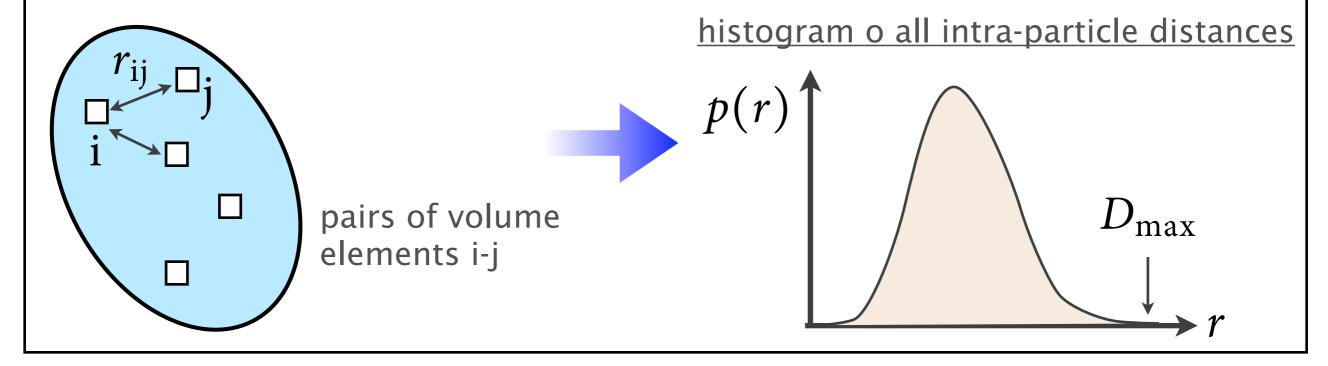
Intensity for random particle system

Scattering intensity:
$$I(q) = 4\pi \int_0^\infty \gamma_0(r) \frac{\sin(qr)}{qr} r^2 dr$$

Pair distance distribution function :PDDF $p(r) = r^2 \gamma_0(r)$

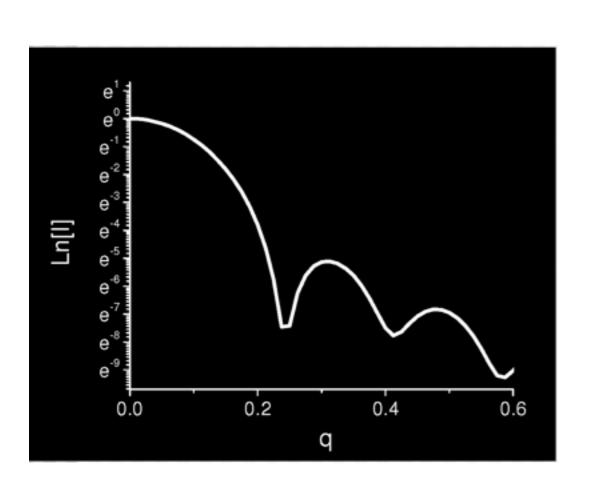
the set of distances joining the volume elements within a particle, including the case of non-uniform density distribution.

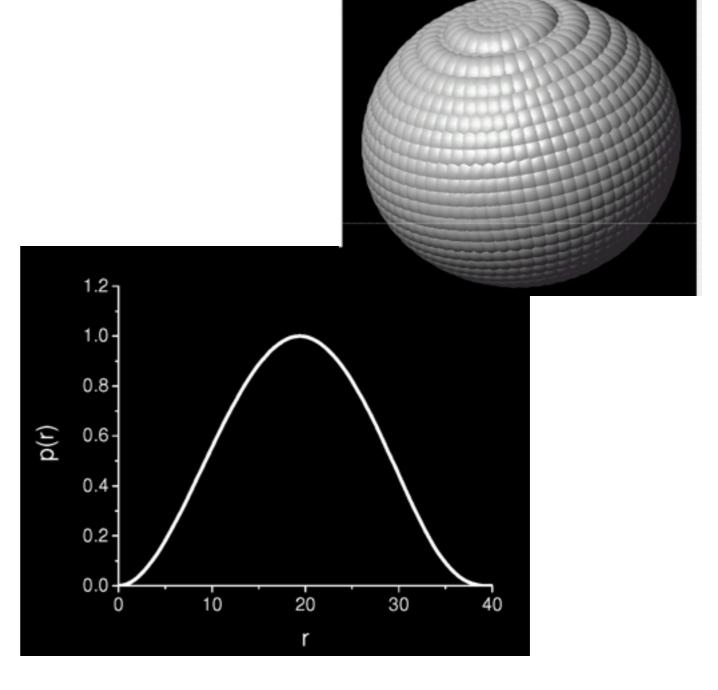
Particle's SHAPE and maximum DIMENSION.



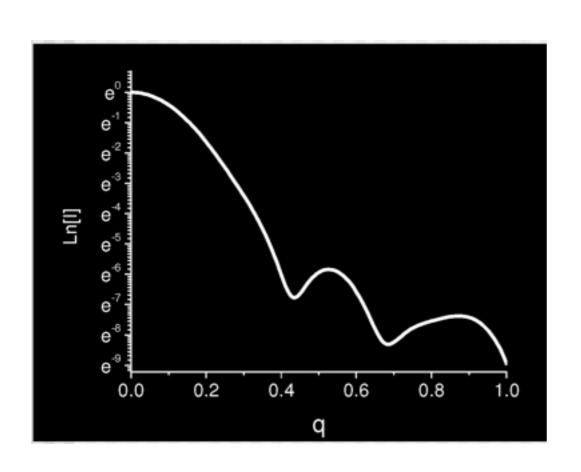
$$I(q) = 4\pi \int_0^\infty p(r) \frac{\sin(qr)}{qr} dr$$

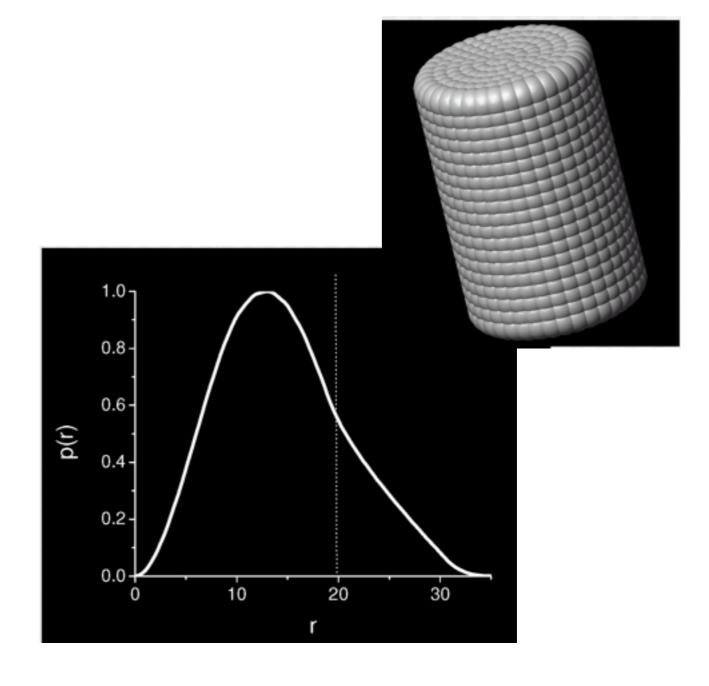
Spherical particle



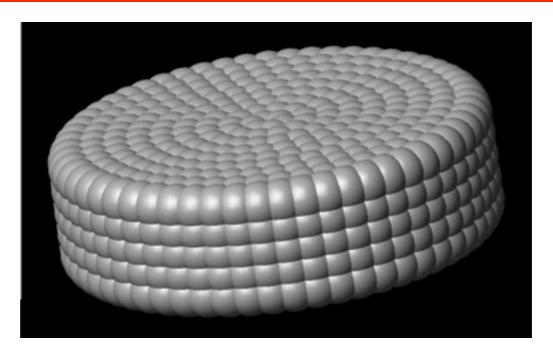


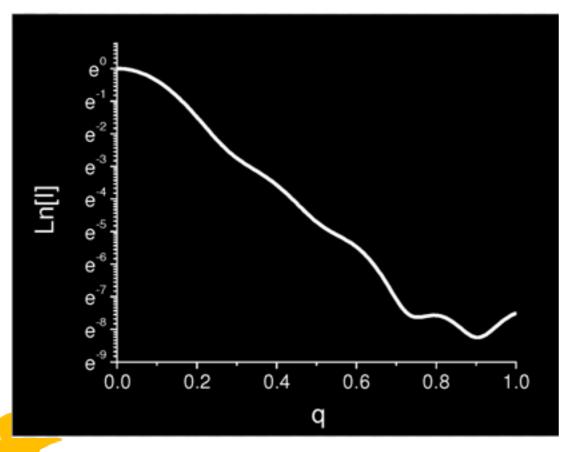
Cylindrical particle

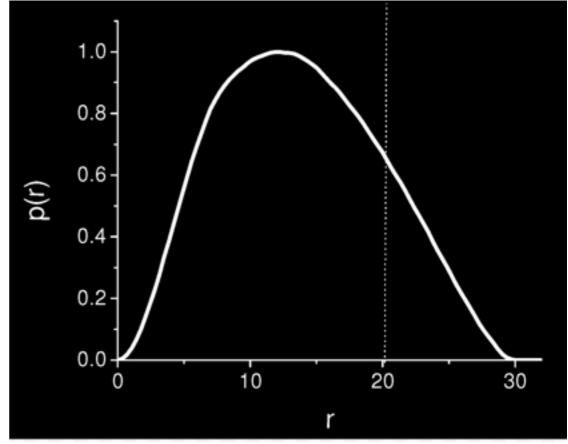




Flat particle

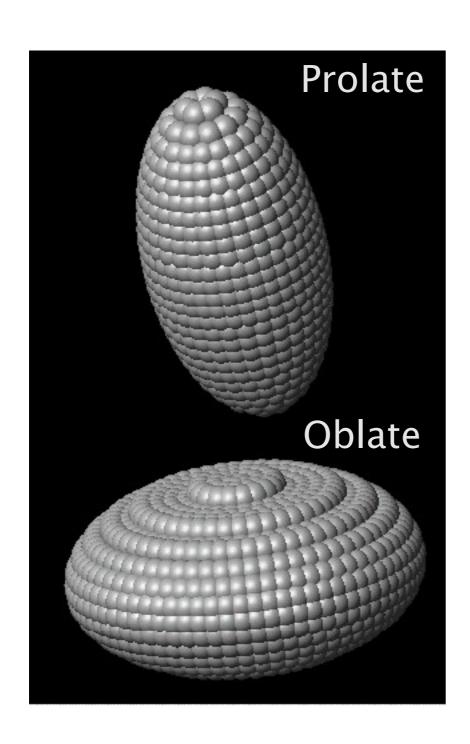


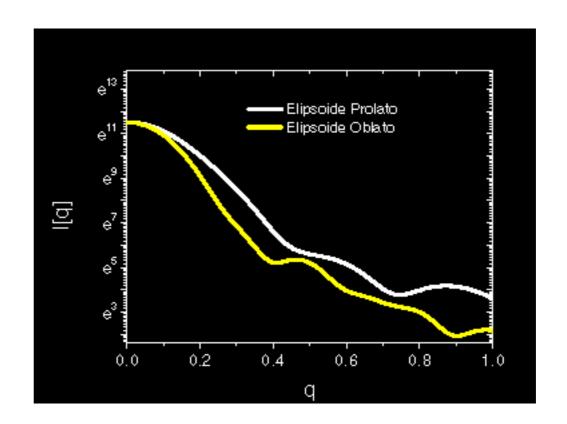


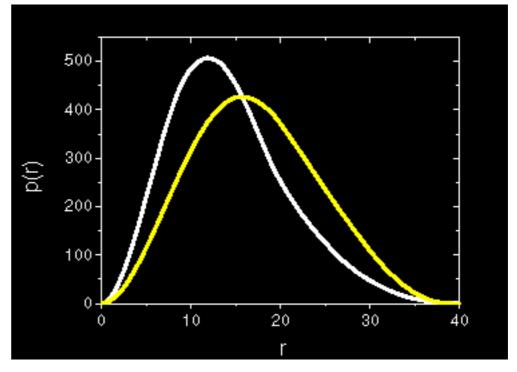


courtesy to Dr. I.L.Torriani

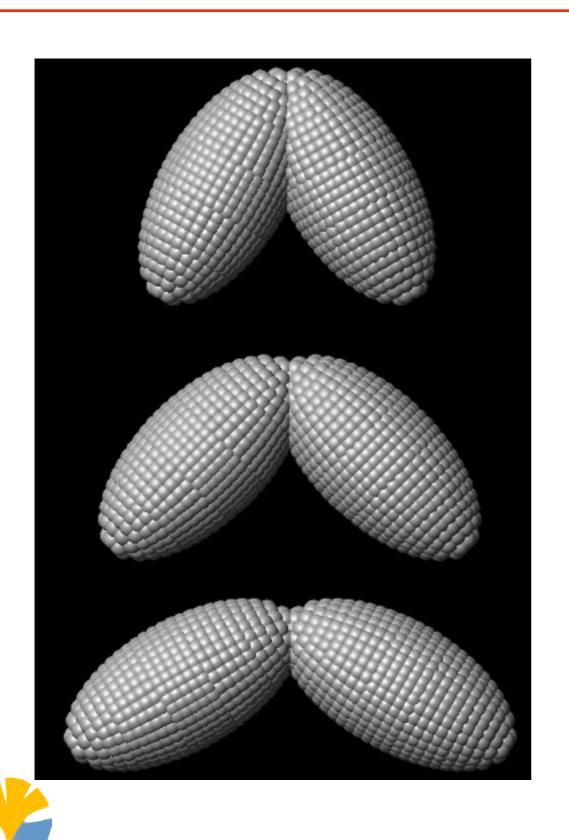
Ellipsoids

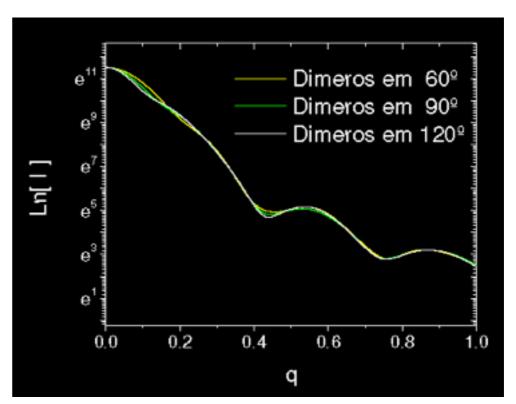


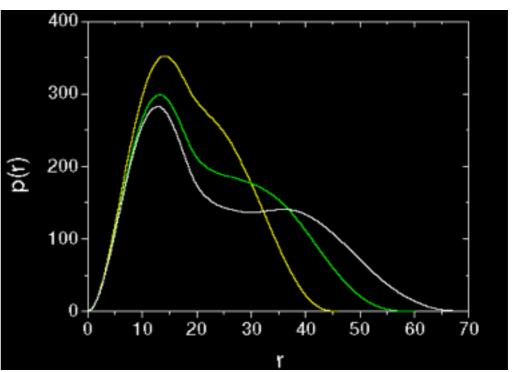




Two ellipsoid = dimer

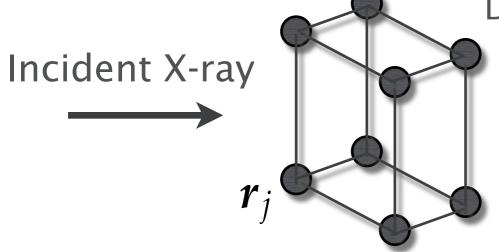






courtesy to Dr. I.L.Torriani

Diffraction from Periodic Structure



Diffraction from Unit cell (Crystalline structure factor)

$$F(q) = \sum_{j} f(q) \exp(-iq \cdot r_j)$$

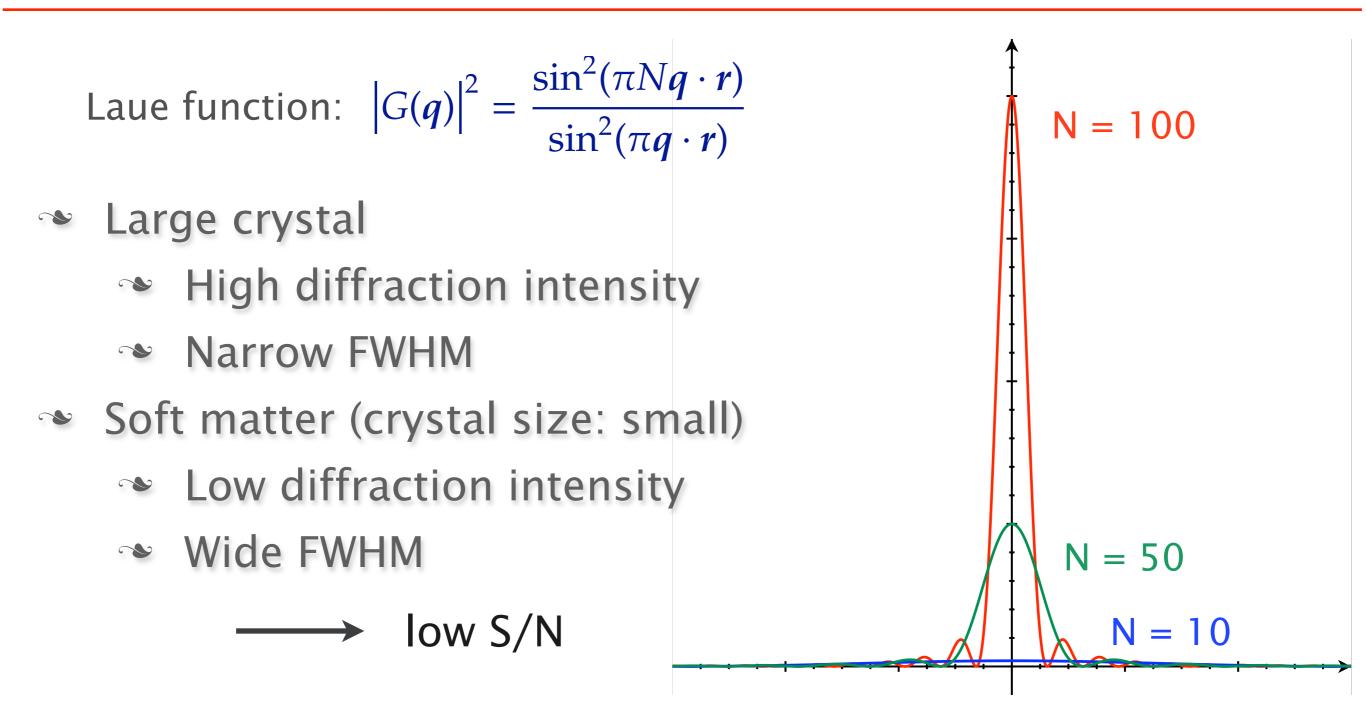
f(q): Atomic Form Factor

Diffraction Intensity:
$$I(q) \sim |G(q)|^2 |F(q)|^2$$

Laue function:
$$|G(q)|^2 = \frac{\sin^2(\pi Nq \cdot r)}{\sin^2(\pi q \cdot r)}$$

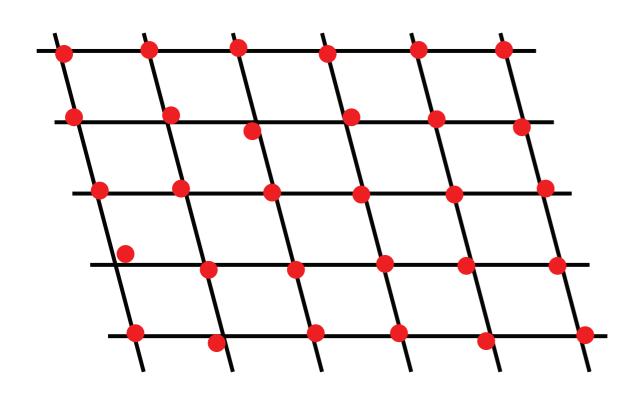
- Maximum ~ N²
- \sim FWHM ~ 2π/N
 - FWHM --> Size of crystal

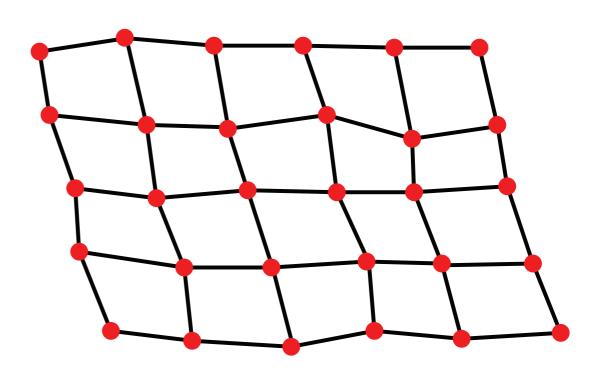
Laue Function



Crystal size --> Intensity & FWHM of diffraction

Imperfection of crystal (2D)





Imperfection of 1st kind

Thermal fluctuation etc.

Imperfection of 2nd kind

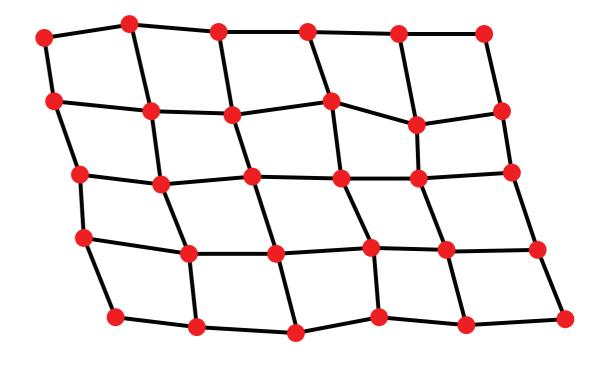
in the case of soft matter

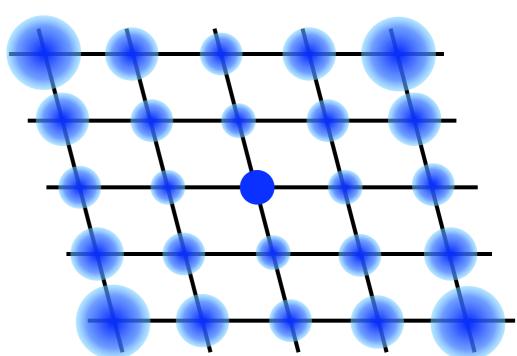
Imperfection of crystal

Imperfection of 1st kind

Autocorrelation

Imperfection of 2nd kind

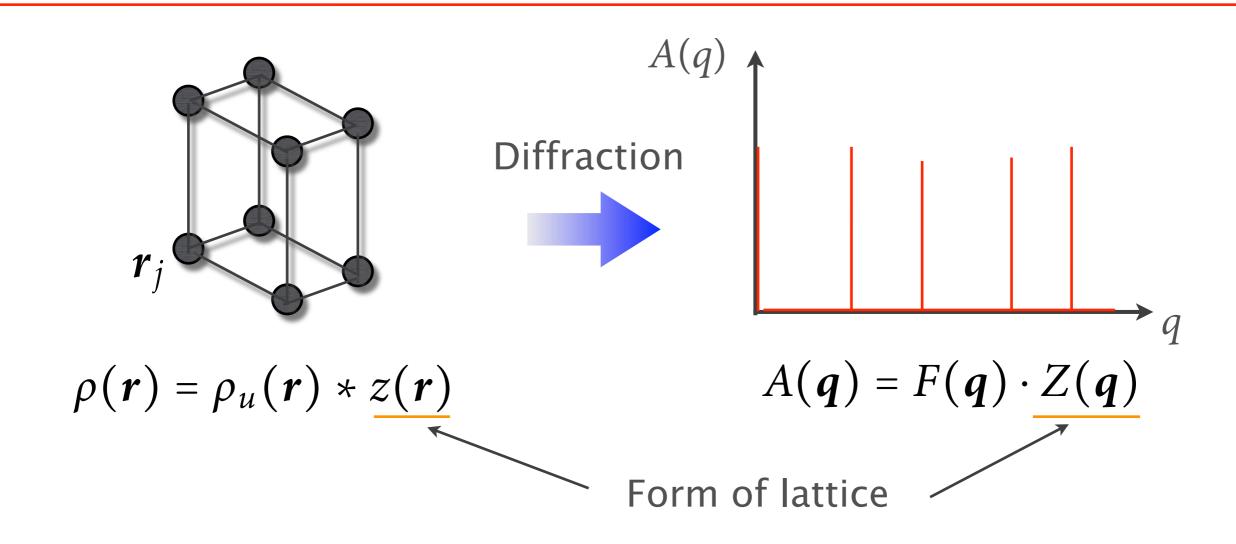




Imperfection of lattice (1D)

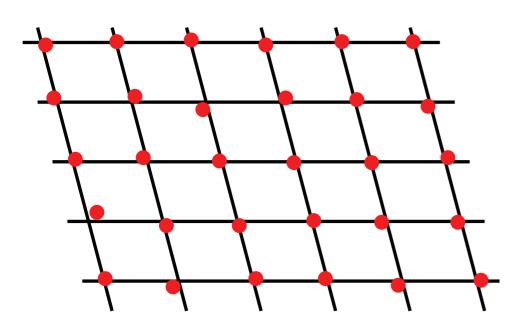
Effect of imperfections on diffraction?

Diffraction from lattice-structure



z(r) with imperfection ---> calculate Z(q)

Imperfection of 1st kind



p(r): distribution function

Fourier trans.
$$P(q)$$

Diffraction with imperfection:
$$\left|Z(q)\right|^2 = N\left[1 - \left|P(q)\right|^2\right] + \left|P(q)\right|^2 Z_0(q)$$

Thermal fluctuation (p(r): Gaussian)

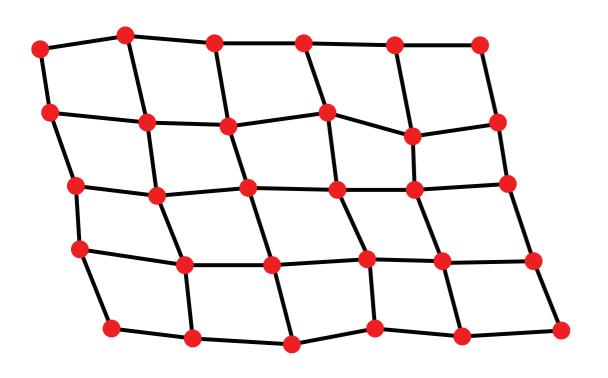
$$\exp\left(-\frac{1}{3}\sigma^2q^2\right)$$

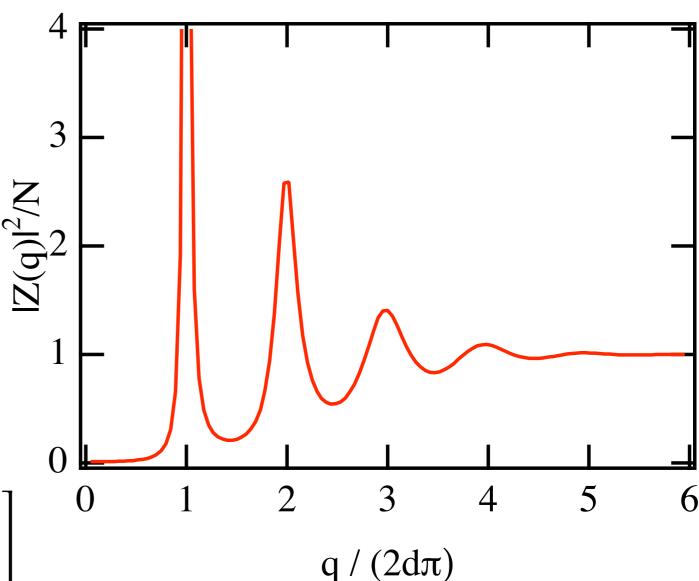
- Debye-Waller factor: $\exp\left(-\frac{1}{2}\sigma^2q^2\right)$
 - decrease diffraction intensity (no effect on FWHM)

- background at larger angle diffraction

ideal lattice

Imperfection of 2nd kind





Paracrystal theory

$$|Z(q)|^2 = N \left[1 + \frac{P(q)}{1 - P(q)} + \frac{P^*(q)}{1 - P^*(q)} \right]$$

Decrease of diffraction intensity and Increase of FWHM

R. Hosemann, S. N. Bagchi, *Direct Analysis of Diffraction by Matter*, North-Holland, Amsterdam (1962).

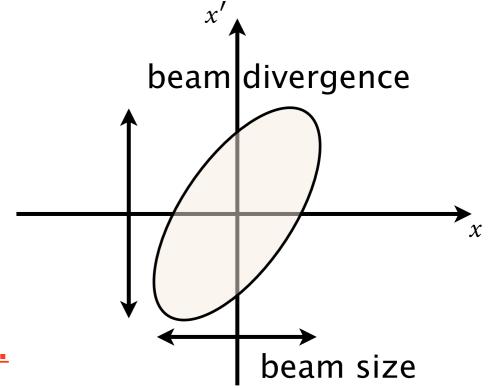
X-ray Source for SAXS

Brilliance -- Product of size and divergence of beam

Brilliance =
$$\frac{d^4N}{dt \cdot d\Omega \cdot dS \cdot d\lambda/\lambda}$$

[photons/(s·mrad²·mm²·0.1% rel.bandwidth)]

Brilliance is preserved (Liouville's theorem).

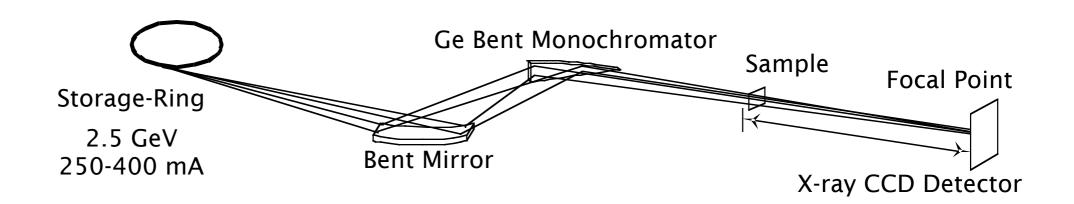


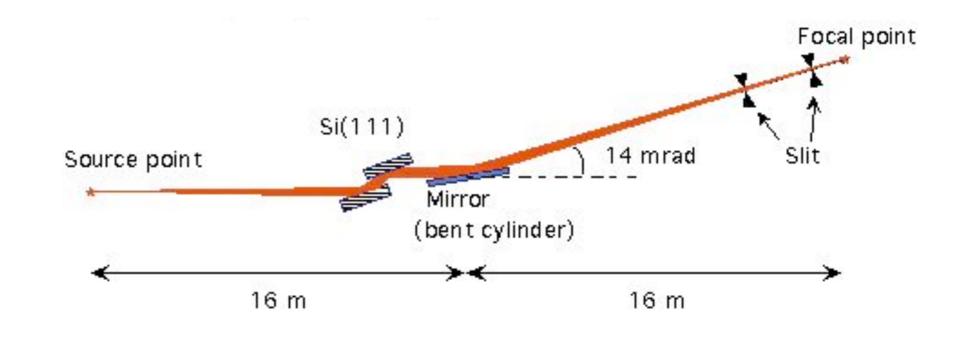
SAXS with a low divergence and small beam

High brilliance beam is required!

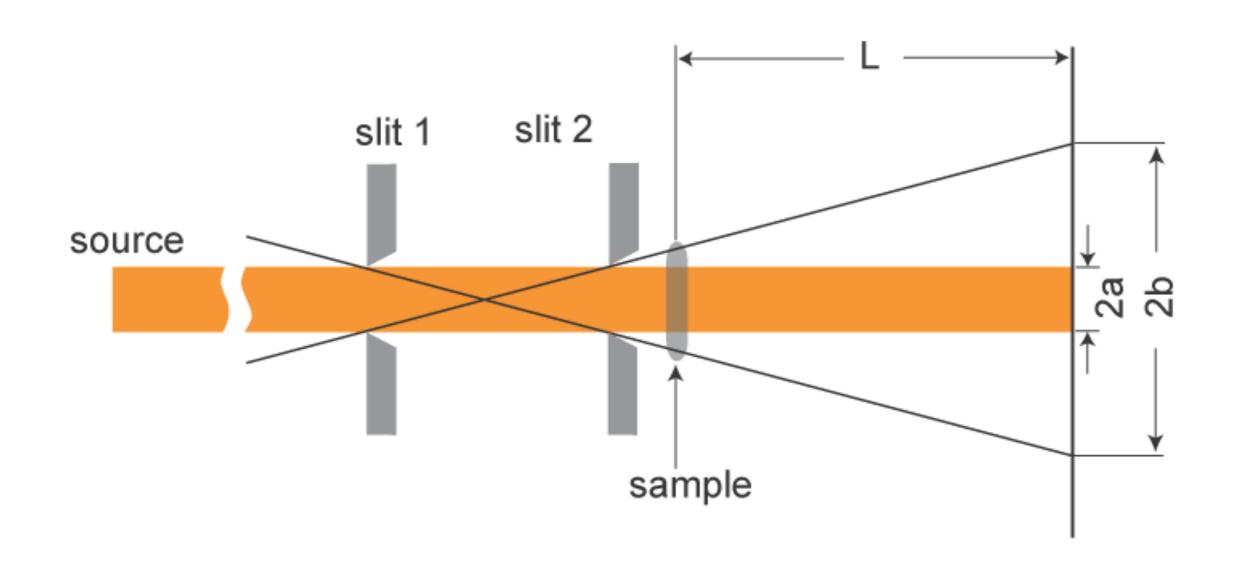
SAXS Optics

PF BL-15A





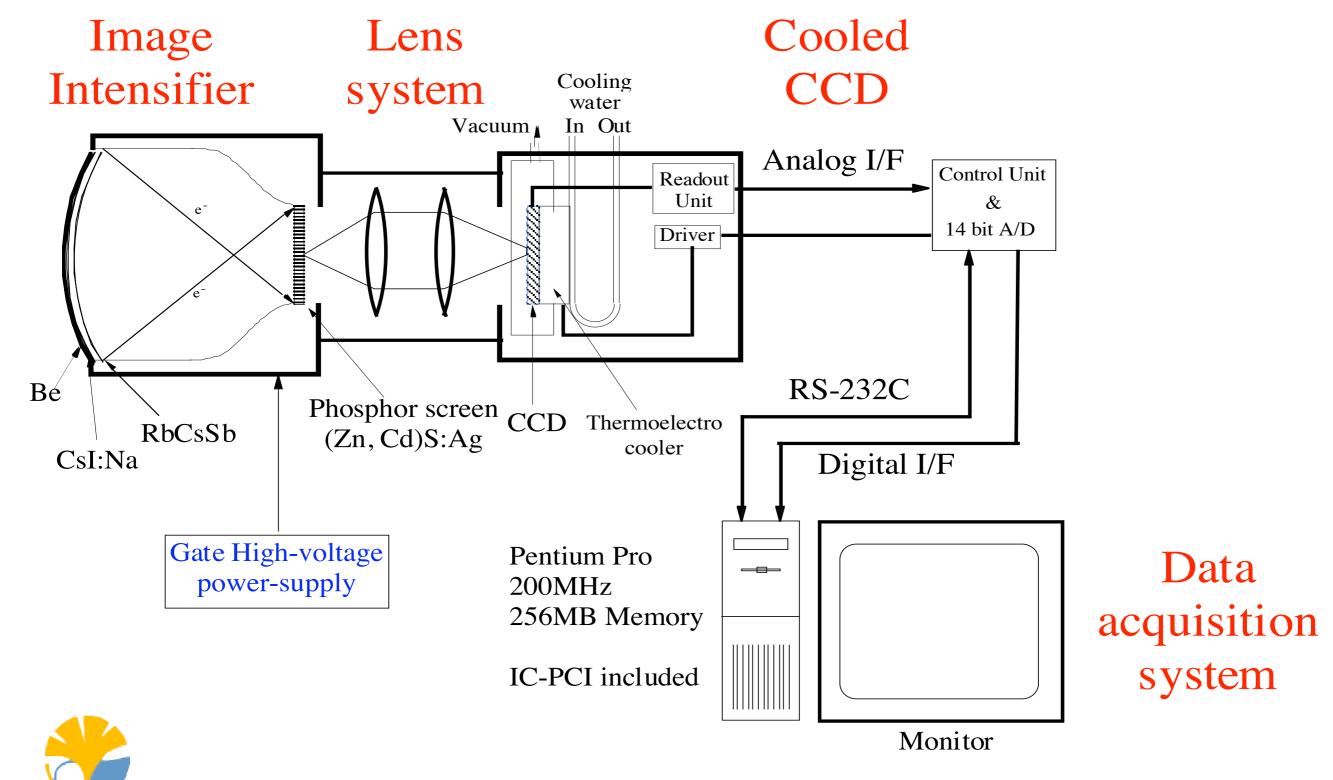
SAXS slits



Detectors for SAXS

	Good Point	Drawback
PSPC	time-resolvedphoton-countinglow noise	counting-rate limitation
Imaging Plate	wide dynamic rangelarge active area	· slow read-out
CCD with Image Intensifier	time-resolvedhigh sensitivity	image distortionlow dynamic range
Fiber- tapered CCD	fast read-outautomated measurement	 not good for time- resolved

X-ray CCD detector with Image Intensifier



Advanced SAXS

Microbeam X-ray

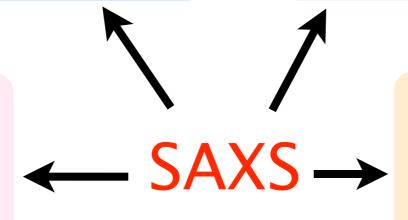
- Inhomogeneity of nano-structure
- local time evolution of structure

Time-resolved

- time evolution of structure

GI-SAXS

- surface, interface, thin films



XPCS

- structural fluctuation
- dynamics

Combined measurement with DSC, viscoelasticity wide-q (USAXS-SAXS-WAXS) 2D measurement

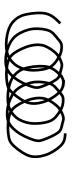
- hierarchical structure

- anisotropic structure

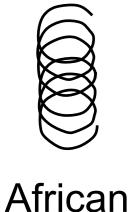
Application of paracrystal theory



Collab. with Kao Itd.





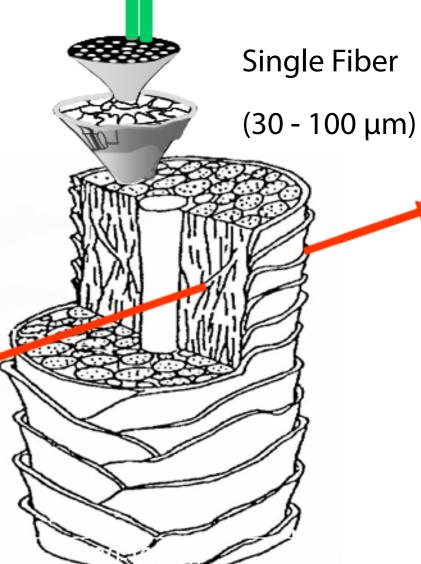


Caucasian

X-ray Microbeam

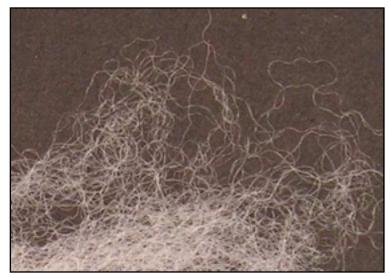
 $(5 \mu m \times 5 \mu m)$

Relationship between macroscopic form and microscopic structure?

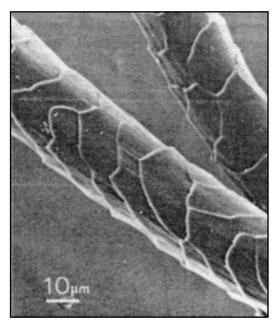


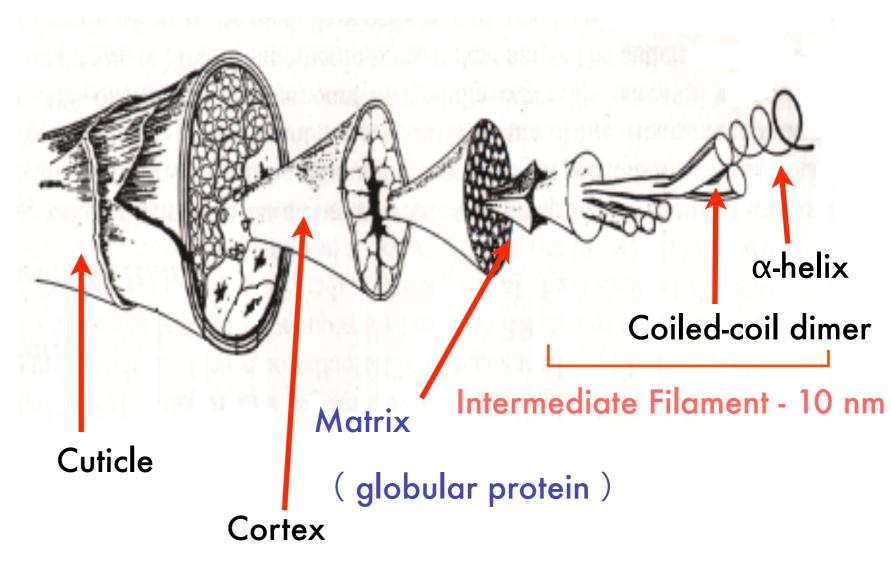
Local observation with an X-ray microbeam

Internal structure of wool



SEM 像





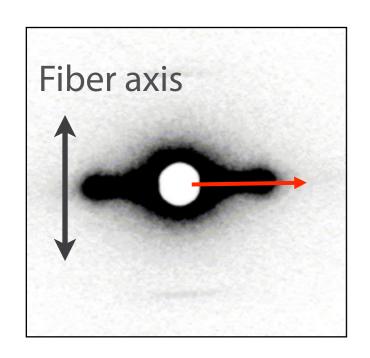
R. D. B. Fraser et al., Proc. Int. Wool Text. Res. Conf., Tokyo, II, **37**, (1985) partially changed.

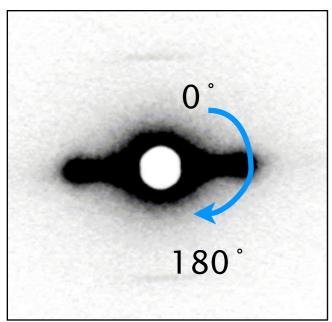
H. Ito et al., Textile Res. J. 54, 397-402 (1986).

Relationship between IF distribution and hair curlness?

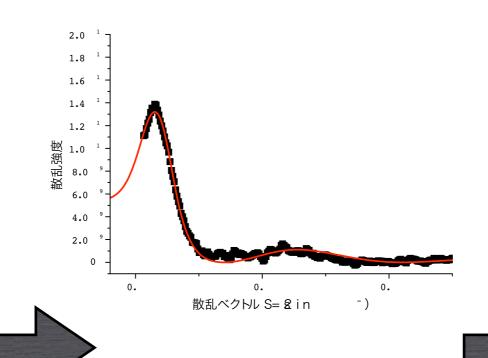
Structure of Intermediate Filament

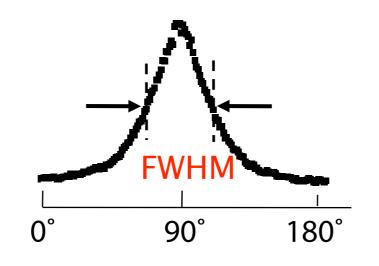
Scattering pattern



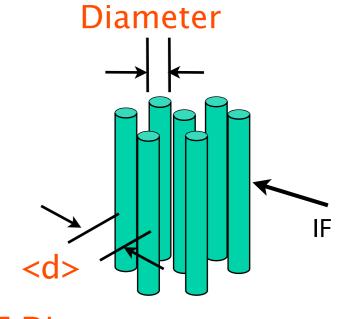


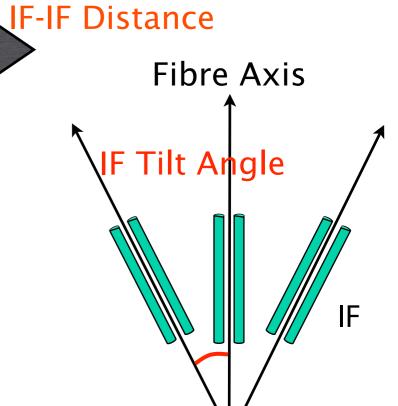
1D intensity profile



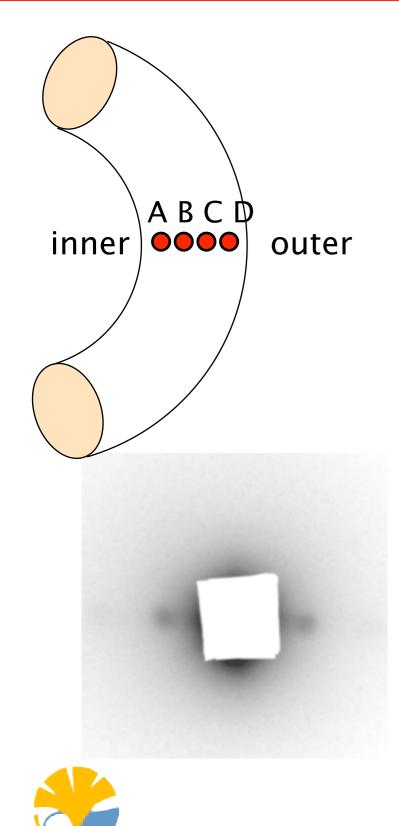


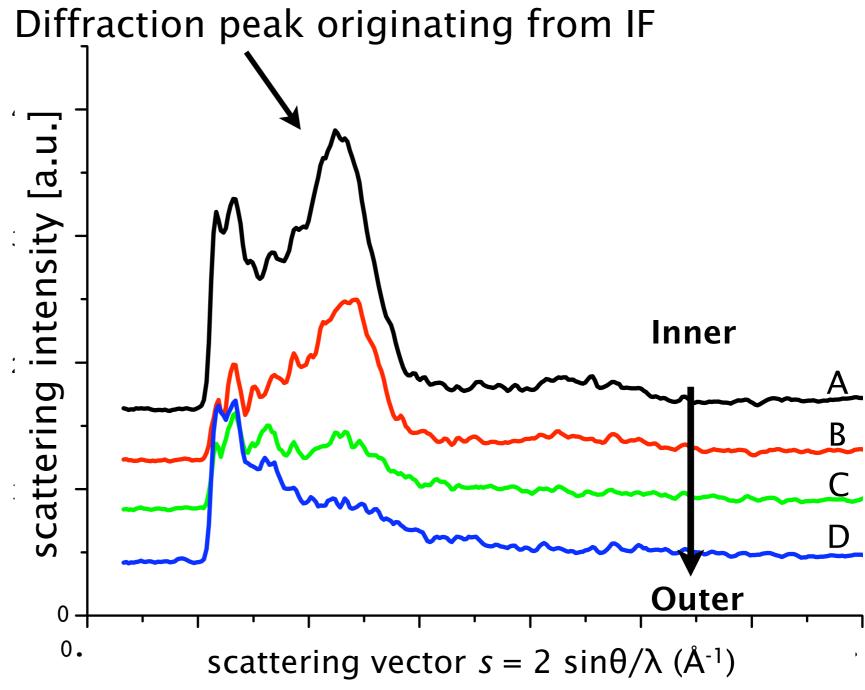
Real space structure



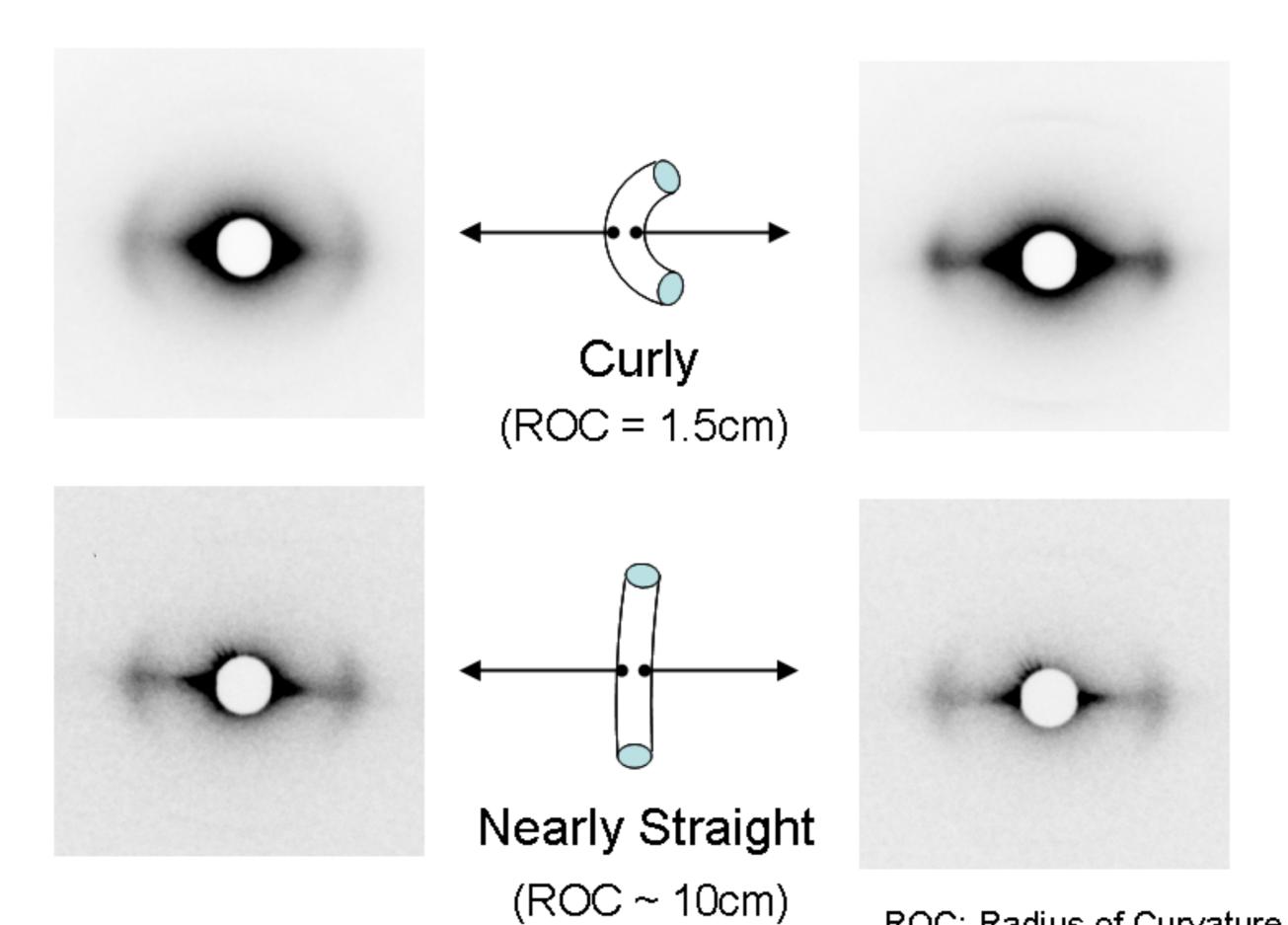


Diffraction intensity profiles



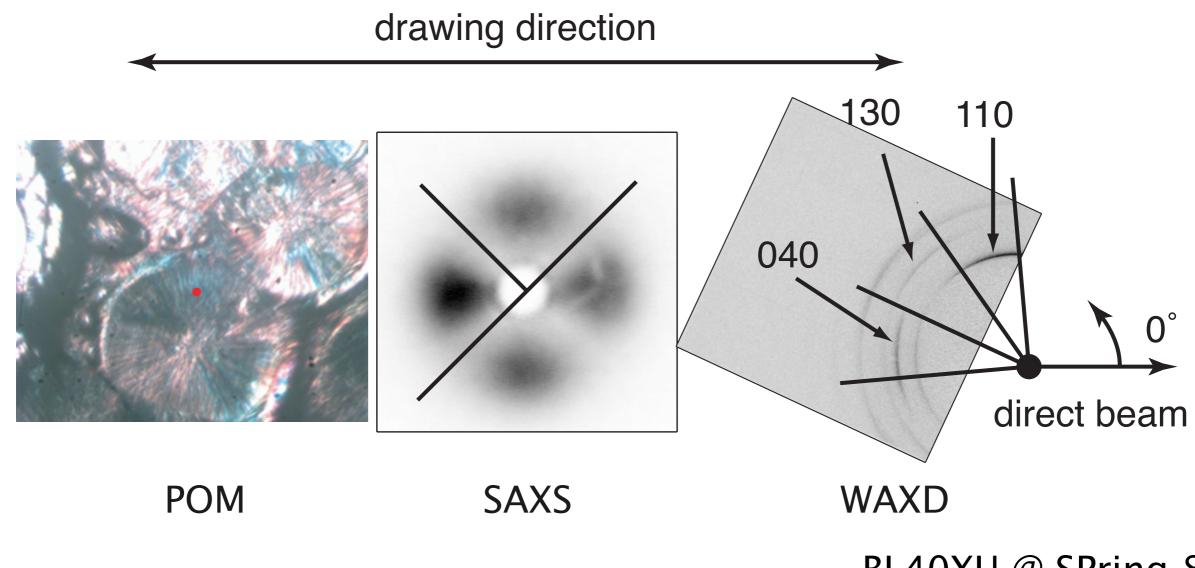


Difference in diffraction intensity --> Structural difference in cortex.



ROC: Radius of Curvature

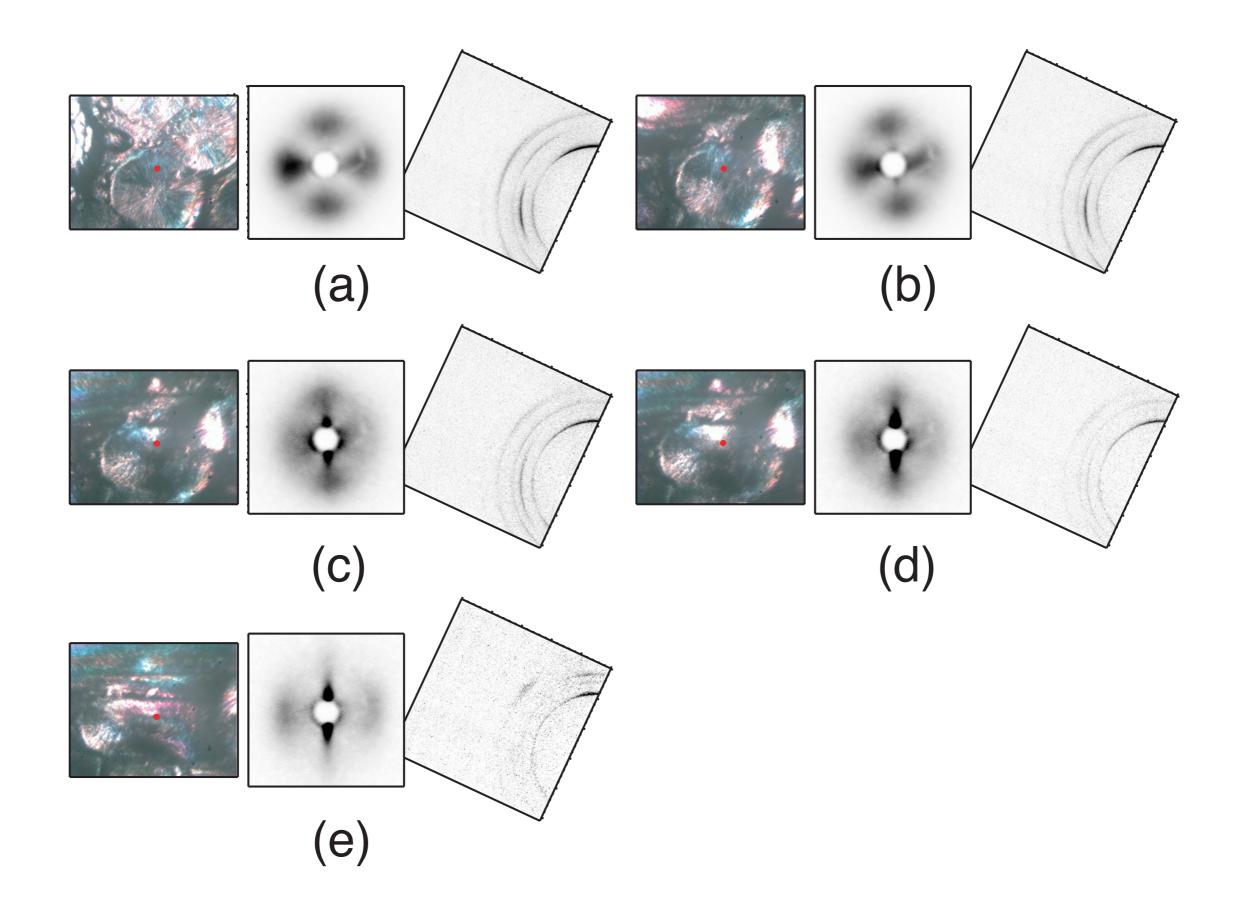
Deformation process of spherulite



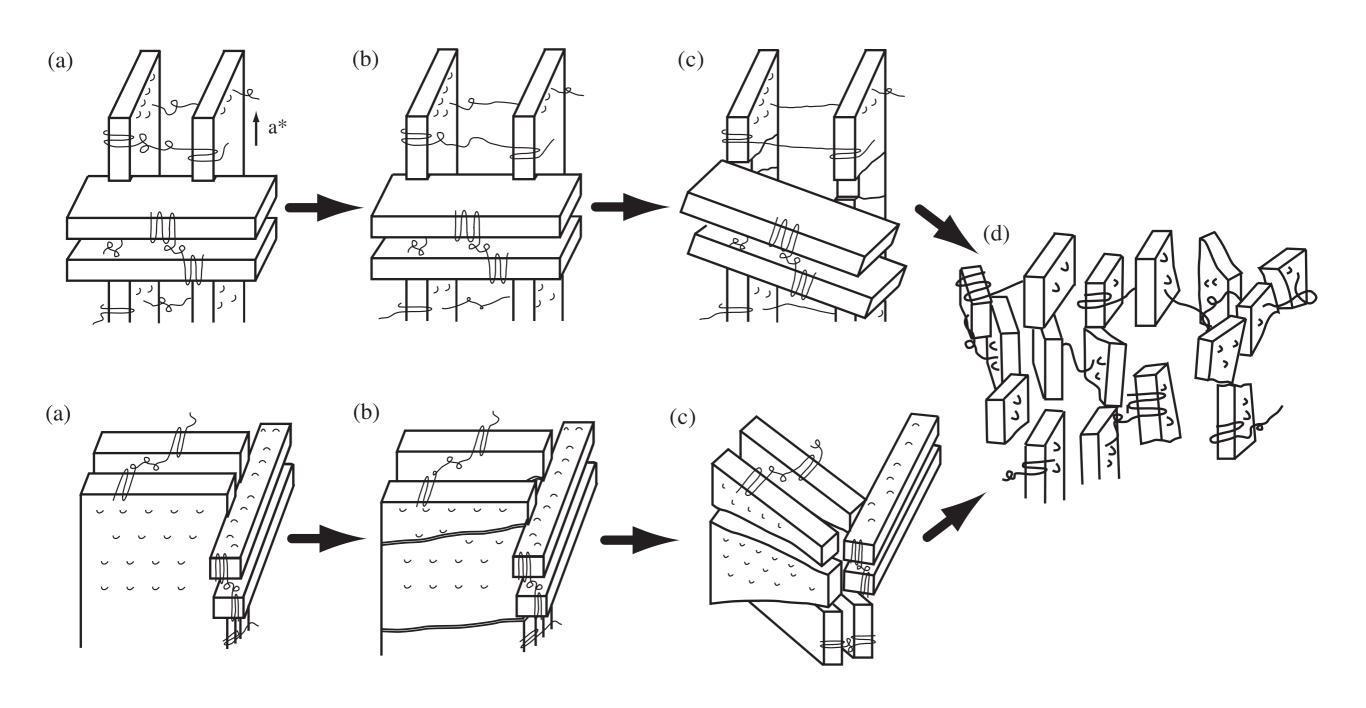
BL40XU @ SPring-8

Local deformation manner of polypropylene during uniaxial elongation process

Combined measurement of polarized microscope and microbeam SAXS/WAXD.



Deformation model of PP



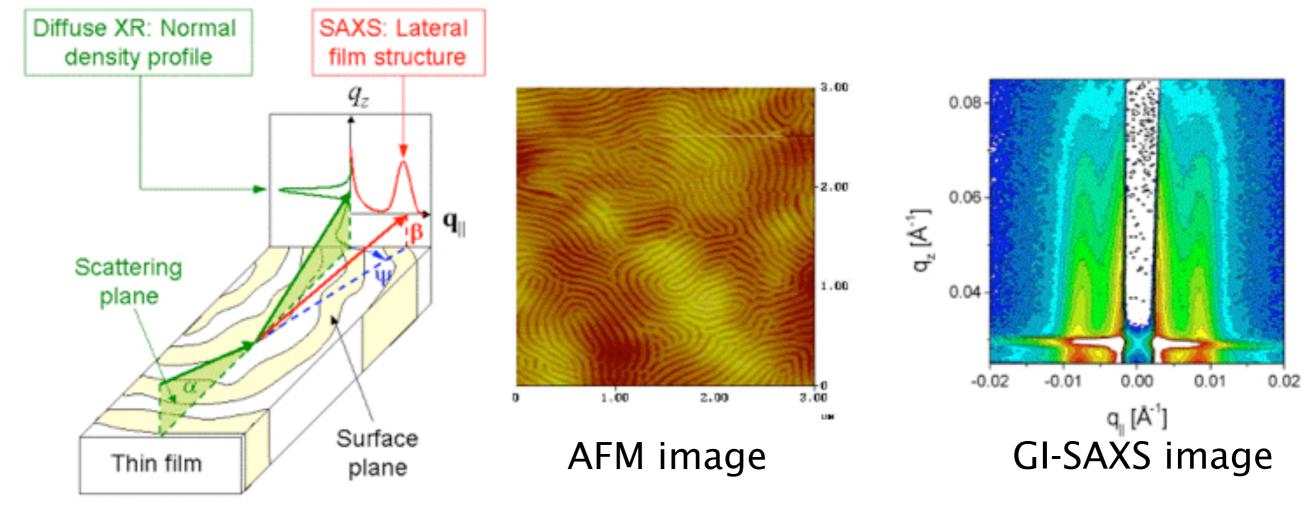
Y. Nozue, Y. Shinohara, Y. Ogawa et al., Macromolecules, 40, 2036 (2007).

Grazing Incidence SAXS

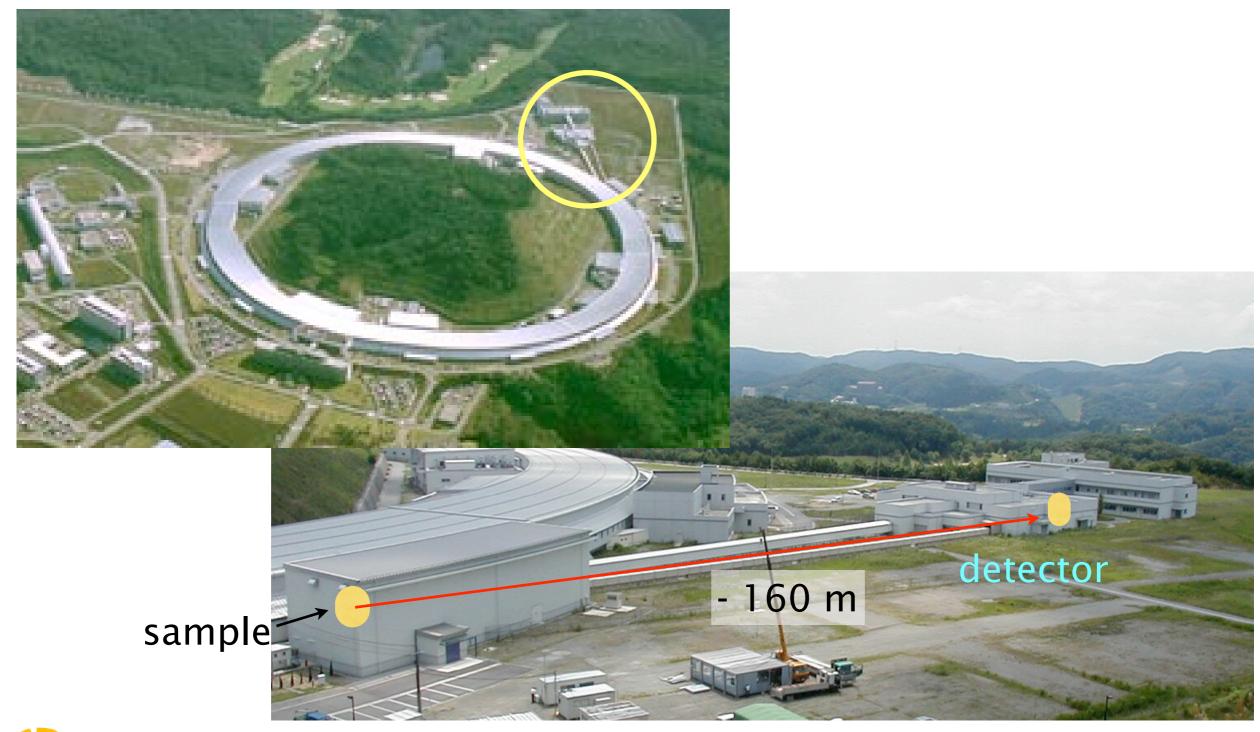
<u>Advantage</u>

- Surface/interface sensitive (beam footprint).
- In-plane structure and out-of-plane structure can be separated.
- Thin film sample on substrate can be measured.

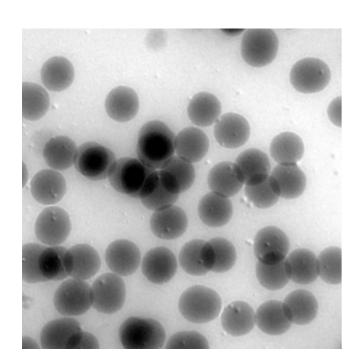
Ex: from Web page of Dr. Smiligies @ CHESS



USAXS using medium-length beamline

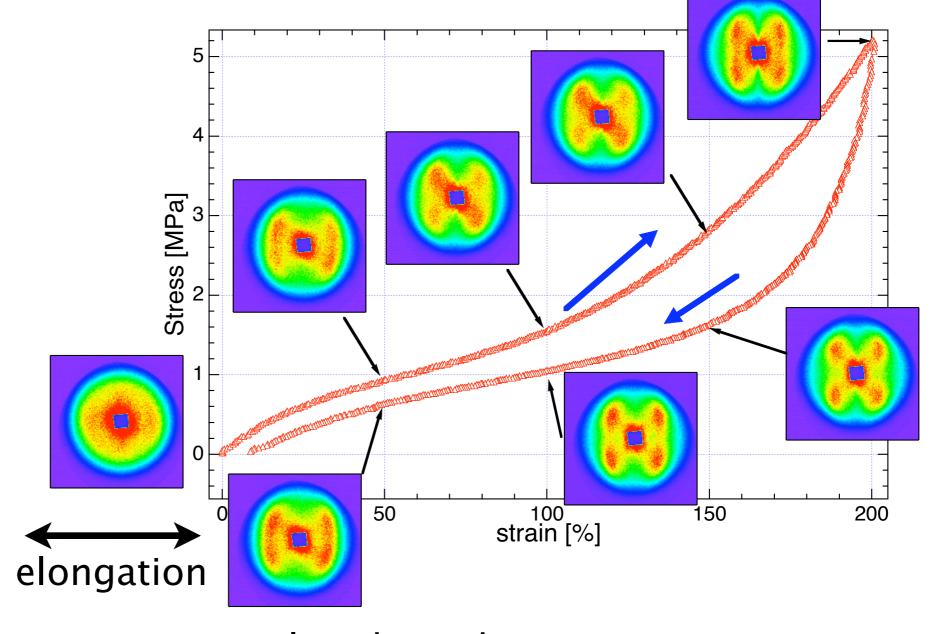


USAXS patterns from elongated rubber



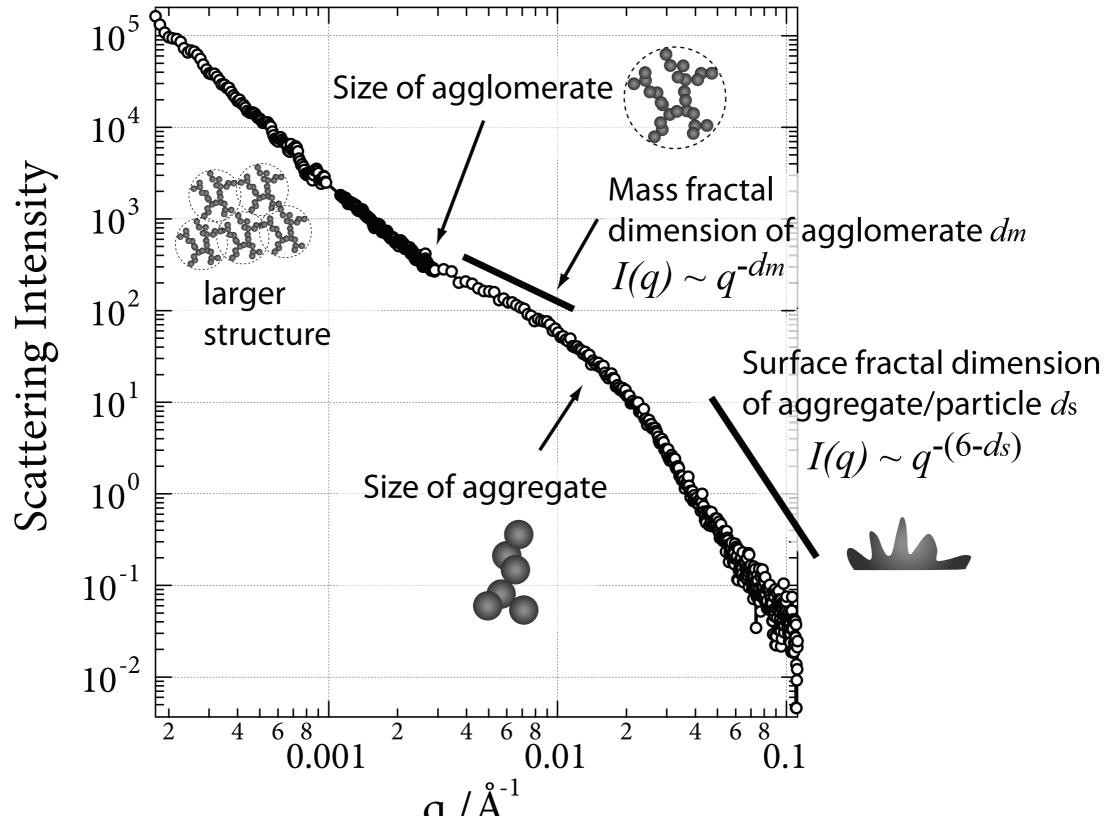
TEM image

Rubber filled with spherical silica



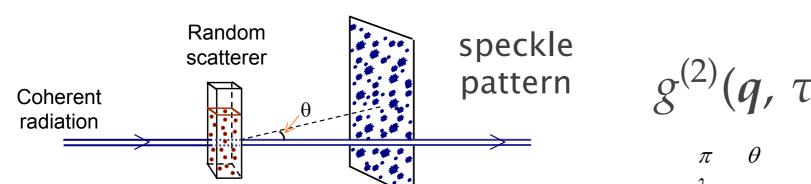
Scattering pattern also shows hysteresis.

Structural information from USAXS



X-ray Photon Correlation Spectroscopy: XPCS

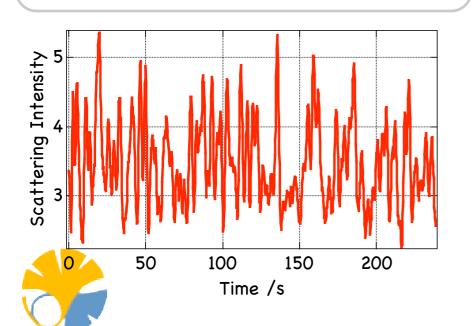
Measurement of fluctuation of X-ray scattering intensity
 --> Structural fluctuation in sample



$$g^{(2)}(q, \tau) = \frac{\langle I(q, 0)I^*(q, \tau)\rangle}{\langle I(q)\rangle^2}$$

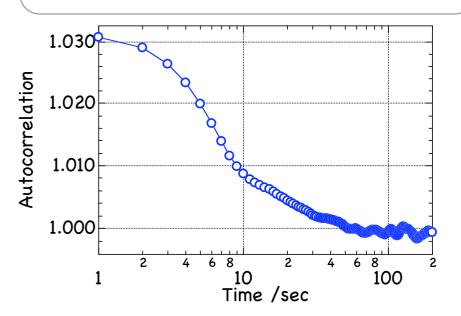
Time-resolved SAXS with coherent X-ray

Fluctuation of intensity

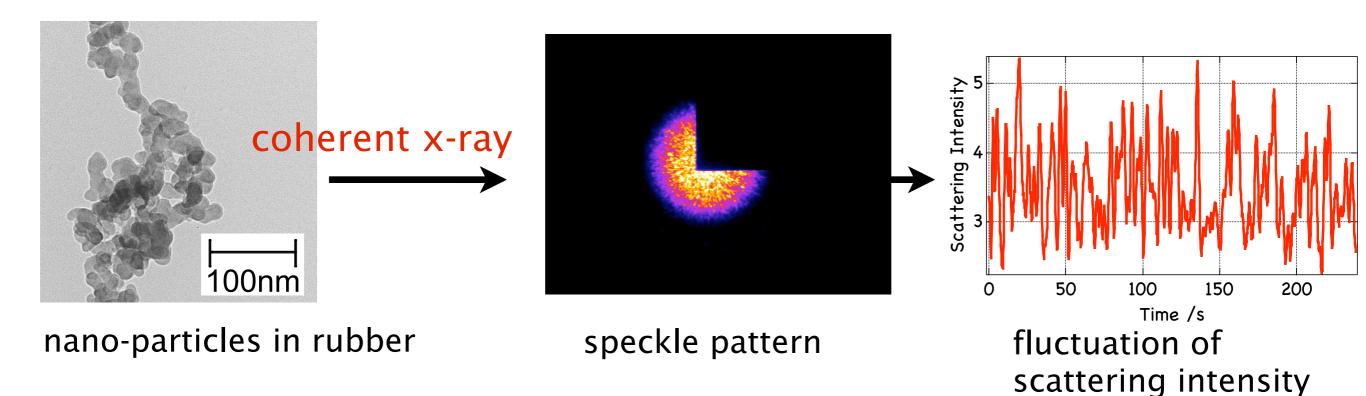


Autocorrelation

relaxation time in system

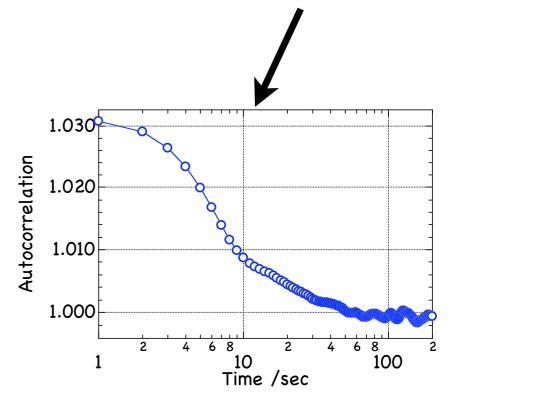


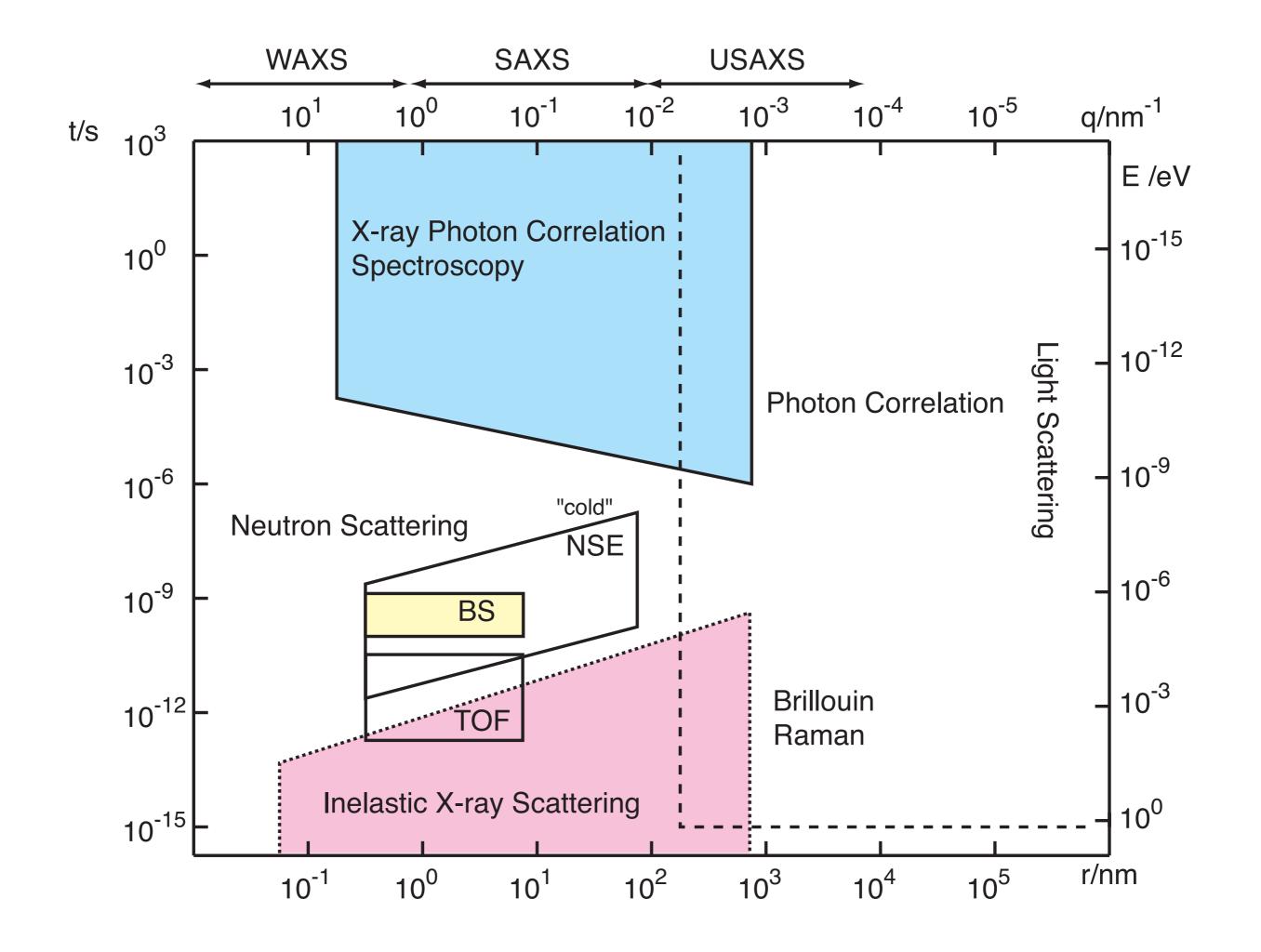
Dynamics of nanoparticles observed with XPCS



Dependence of dynamics on...

- Volume fraction of nano-particles
- Vulcanization (cross-linking)
- Type of nano-particles
- Temperature etc.





Bibliography

- A. Guinier and A. Fournet (1955) "Small angle scattering of X-rays" Wiley & Sons, New York. out-of-print
- O. Glatter and O. Kratky ed. (1982) "Small Angle X-ray Scattering" Academic Press, London. out-of-print
- L. A. Feigin and D. A. Svergun (1987) "Structure Analysis by Small Angle X-ray and Neutron Scattering" Plenum Press. out-of-print?
- P. Lindner and Th. Zemb ed. (2002) "Neutron, X-ray and Light Scattering: Soft Condensed Matter", Elsevier.
- Proceedings of SAS meeting (2003 & 2006). Published in J. Appl. Cryst.
- R-J. Roe (2000) "Methods of X-ray and Neutron Scattering in Polymer Science", Oxford University Press.

