November 3, 2009

Cheiron School 2009

X-ray Beamline Design

Shunji Goto SPring-8/JASRI

Table of contents

- 1. Introduction
- 2. Light source
- 3. Monochromator
- 4. Mirror
- 5. Others

Phase retarder

- Spatial coherence
- Front-end
- Transport channel
- Shielding hutch
- 6. Example of beamline
- 7. Summary

Process of beamline construction

Beamline design is first step and crucial for success of the beamline !

→ Fundamental of X-ray beamline; light source, monochromator, mirror,...

Beamline structure

Beamline = "Bridge" between light source & experimental station

Shielding and interlock

pump,..

Light sources & X-ray optics

Check points to be considered for your application:

- White or monochromatic
- Energy range
- Energy resolution
- Flux & flux density
- Beam size at sample (micro beam?,...)
- Beam divergence/convergence at sample (Resolution in k-space)
- Higher order elimination w/ mirror
- Polarization conversion
- Spatial coherency

. . . .

→ Light source, monochromator, mirror,

and other optical devices and components

BL classification (energy region)

BL classification (energy resolution)

Energy resolution ($\Delta E/E$) \rightarrow

7

Light sources

Bending magnet or insertion devices ?

Bending magnet:

for wide energy range, continuous spectrum for wide beam application for large samples

Undulator (major part of 3GLS beamline):

for high-brilliance beam

for micro-/ nano-focusing beam

Wiggler:

for higher energy X-rays > 100 keV.

 \rightarrow short-period-length undulator

Power, brilliance, flux density, partial flux,... can be calculated using code.

e.g. "SPECTRA" by T. Tanaka & H. Kitamura

Brilliance for SPring-8 case

Monochromator

Key issues from experimental request:

White or monochromatic ? \rightarrow monochromatic

Energy region ← Bragg's law

Energy resolution ← Source divergence, Darwin width,...

Throughput ← related to energy resolution

Double-crystal monochromator for fixed-exit

Single-bounce monochromator is for limited case

Heat load ← depending on light source

X-ray monochromator using perfect crystal

\rightarrow Principle of monochromator

Bragg reflection from perfect single crystal

 $2d\sin\theta_{\rm B} = n\lambda$

d: Latiice (d)-spacing,

 $\theta_{\rm B}$: glancing angle (Bragg angle),

 λ : X-ray wavelength

→ Crystal: silicon, diamond,...

Reflectivity (intrinsic rocking curve)

Darwin curve (intrinsic rocking curve for monochromatic plane wave) for Bragg case, no absorption, and thick crystal:

$$\begin{cases} R = \frac{|\gamma_{h}|}{\gamma_{0}} \left| \frac{E_{h}}{E_{0}} \right|^{2} = \left(W + \sqrt{W^{2} - 1} \right)^{2} \quad (W < -1) \\ R = 1 \quad (-1 \le W \le 1) \quad \leftarrow \text{ Total reflection region} \\ R = \left(W - \sqrt{W^{2} - 1} \right)^{2} \quad (W > 1) \end{cases}$$
For symmetric Bragg case, sigma polarization:

$$W = \left\{ \Delta \theta \sin 2\theta_{BK} + \chi_{0r} \right\} \frac{1}{|\chi_{hr}|}$$
Darwin width $\rightarrow \Delta W = 2$

$$\left[\omega = \frac{2|\chi_{hr}|}{\sin 2\theta_{BK}} \propto |F_{h}| \right]$$
Crucial for energy resolution and throughput!

11

Intrinsic rocking curve for silicon

For Bragg case, with absorption, and thick crystal:

- Darwin width of 0.1∼100 µrad
- Peak ~1 with small absorption

Source divergence and diffraction width

Divergence of undulator radiation ~ diffraction width

Energy resolution

For usual beamline : $\Delta E/E = 10^{-5} \sim 10^{-3}$

14

DuMond diagram: undulator ~

Wider slit increases unused photons (power) on the monochromator ! 15

Improvement of energy resolution

Photon flux after monochromator

Photon flux (throughput) after monochromator can be estimated using effective band width:

Photon flux (ph/s) =

Photon flux from light source (ph/s/0.1%bw)

x 1000

x Effective band width of monochromator

Throughput is estimated by overlapped area. Note difference from energy resolution.

Darwin width → energy width

Starting with Darwin width and neglecting anomalous scattering factor f'

Independent of photon energy

Effective band width (Integrated intensity)

When you need flux \rightarrow Lower order (Si 111 refl.,..) When you need resolution \rightarrow Higher order (Si 311, Si 511 refl,...)

Photon flux at bending magnet beamline

Example of photon flux estimation at bending magnet beamline BL02B1. (Photon flux density at 50 m from the source)

Photon flux at undulator beamline

We can obtain photon flux of $10^{13} \sim 10^{14}$ ph/s/100 mA/mm² using standard undulator sources and Si 111 reflections at SPring-8 beamlines.

Double-crystal monochromator

Fixed-exit operation for usability at experimental station.

Choose suitable mechanism for energy range (Bragg angle range).

Precision, stability, rigidity,...

θ_1 + translation + θ_2 computer link

SPring-8 BL15XU

SPring-8 information Vol. 5, No.1 (2000)

h= 100 mm, $\theta_{\rm B}$ = 5.7~72° (for lower energy range)

Large offset, long-stroke translation

Difficulty of adjustment between 1st and 2nd crystal

θ + two translation (KEK-PF)

Matsushita et al., NIM A246 (1986)

h= 25 mm, $\theta_{\rm B}$ = 5~70°

Two cams for two translation-stages Rotation center at 2nd crystal

SPring-8 standard DCM

Offset h= 30 mm $\theta_{\rm B}$ =3~27° for higher energy range

Yabashi et al., Proc. SPIE 3773, 2 (1999)

High-precision adjustment stages for undulator beamline DCM Sub-µm & sub-µrad control 25

Crystal cooling

Why crystal cooling?

Qin (Heat load by SR) = Qout (Cooling + Radiation,..)

- \rightarrow with temperature rise $\varDelta T$
- $\rightarrow \alpha \Delta T = \Delta d (d$ -spacing change)

 α : thermal expansion coefficient

or $\rightarrow \varDelta \theta$ (bump of lattice due to heat load)

Miss-matching between 1st and 2nd crystals occurs:

- \rightarrow Thermal drift, Loss of intensity, Broadening of beam, loss of brightness
- \rightarrow Melting or limit of thermal strain \rightarrow Broken !

Solution for crystal cooling

We must consider:

Thermal expansion of crystal: α , Thermal conductivity in crystal: κ , Heat transfer to coolant and crystal holder.

Solutions:

(S-1) κ/ α → Larger
(S-2) Large contact area between crystal and coolant/holder
→ larger
(S-3) Irradiation area → Larger, and power density → smaller

Figure of merit

	Silicon 300 K	Silicon 80 K	Diamond 300 K
<i>к</i> (W/m/K)	150	1000	2000
<i>α</i> ′ (1/K)	2.5x10 ⁻⁶	-5x10 ⁻⁷	1x10 ⁻⁶
κ / α x10 ⁶	60	2000	2000

Figure of merit of cooling: Good for silicon (80 k) and diamond (300 K)

For SPring-8 case

Bending magnet beamline

Power and density : ~100 W, ~1 W/mm² @40 m Method:

 \rightarrow Direct cooling with fin crystal

← S-2

Undulator beamline

- \rightarrow Direct cooling of silicon pin-post crystal \leftarrow S-2
 - + Rotated inclined geometry (\rightarrow 10 W/mm²) \leftarrow S-3
- \rightarrow or Cryogenic cooling using LN₂ circulation \leftarrow S-1
- \rightarrow or Indirect cooling of IIa diamond crystal \leftarrow S-1

Crystal monochromator at SPring-

<Bending magnet beamline>

Power & power density: ~100 W, ~1 W/mm²

Fin crystal direct-cooling - (S2)

<Undulator beamline>

Linear undulator, N= 140, λ u= 32 mm Power & power density: 300~500 W , 300~500 W/mm²

a)Direct cooling of silicon pin-post crystal – (S2) & (S3)

b) Silicon cryogenic cooling - (S1)

c) Ila diamond with indirect water cooling - (S1)

30

Mirror

- Higher harmonics rejection
- Bent mirror for focusing/collimation
- Figured mirror for micro~nanobeam

Mirror quality

Mirror quality must be considered.

 \rightarrow Micro-roughness

- Reduction of reflectivity
- Lower-energy shift of critical energy
- Diffuse scattering

Optical (Zygo) range (<1 mm): ~ 0.3 nm rms or less AFM range (<1 μm): ~ 1 nm rms or less

\rightarrow Insufficient coating

- Reduction of reflectivity
- Lower-energy shift of critical energy Should be ~100%

\rightarrow Slope error

- Beam shape deformation
- Wave-front distortion
- Flux density loss

LTP range (<1 m): ~1 µrad or less

Mirror reflectivity

Mirror reflectivity for sigma-polarization:

$$R = \left| \frac{k_{iz} - k_{tz}}{k_{iz} + k_{tz}} \exp(-2k_{iz}k_{tz}\sigma^{2}) \right|^{2}$$

$$k_{iz} = \frac{2\pi}{\lambda} \cos \theta, \ k_{tz} = \frac{2\pi}{\lambda} \sqrt{n^2 - \cos^2 \theta}$$

 k_{iz} , k_{tz} : Normal components of incidence and transmitted wave vectors *n*: complex index of refraction

- θ . glancing angle
- σ : high-spatial-frequency roughness (AFM region)

Surface roughness must be considered around critical energy (angle).

Effect of roughness

e.g. reflectivity of Pt mirror

s-polarization Glancing angle: 3 mrad Film thickness: 50 nm

Example of mirror reflectivity

Thickness 50 nm, roughness 1 nm

Material, glancing angle, length

Material

Si, SiC for white radiation

SiO₂, Glass,.. for monochromatic beam

Coating

Pt, Rh, Ni,...

Depending on energy, reflectivity, absorption edges,..

Glancing angle

2~10 mrad (For SPring-8 X-ray beamline)

Depending on energy, reflectivity, absorption edges,..

□ Mirror length

400 mm~1 m (For SPring-8 X-ray beamline) Depending on the beam size and glancing angle e.g. 100 μrad × 50 m/5 mrad= 1 m

Focusing with mirror

For beam focusing or collimation, we need;

elliptical mirror, ellipsoidal mirror, parabolic mirror, paraboloidal mirror,...

→We can approximate by bending:

flat \rightarrow meridional cylinder,

sagittal cylinder \rightarrow toroidal,...

Sagittal focusing w/ sagittal cylinder $r = \frac{2pq}{p+q}\sin\theta$

Meridional focusing w/ meridional cylinder

р

q

e.g.) *θ*= 5 mrad, *p*= 40 m, *q*= 10 m *r*= 80 mm, *R*= 3.2 km

SPring-8 standard mirror support

For SPring-8 X-ray beamline

Given Search For undulator beamline

400-mm-long, vertical deflection, plane 700-mm-long, horizontal deflection, plane

□ For bending magnet beamline

1-m-long, vertical deflection, plane/cylindrical

Options

- Bender
- Indirect water-cooling (side cooling)

For 400-mm-long mirror, Vertical deflection, w/ bender

For 1-m-long mirror, vertical deflection, w/ bender, Indirect water-cooling

Focusing with mirror

Beam size using meridional cylinder mirror:

For micro~nonofocusing, we need precisely-polished and large NA elliptical K-B mirror near exp. station.

J. Susini, Opt. Eng. 34, 361 (1995)

Figured mirror for micro~nanobeam

For micro~nonofocusing, we need precisely-polished and large NA elliptical K-B mirror near exp. station. H. Mimura et al., Appl. Phys. Lett. 90, 051903 (2007)

Diffraction-limited focusing

 \rightarrow

Estimation by oblique aperture model

→ Angular spread due to Fraunhofer diffraction $FWHM_{\phi} = 2.7831 \frac{\lambda}{\pi w} \approx 0.8858 \frac{\lambda}{L \sin \theta}$ → Spatial spread at *q*

$$FWHM_X = 0.8858 \frac{\lambda q}{L\sin\theta}$$

$$\theta_{ave}$$
= 3 mrad
 λ = 0.083 nm (*E*= 15 keV)
L= 45 mm
q= 50 mm
FWHM = 27 nm 41

Polarization conversion

Phase retarder is used to convert the polarization for XMCD and other applications.

Horizontal polarization \rightarrow right-/left-circular polarization Horizontal polarization \rightarrow vertical polarization

Crystal: IIa diamond,...

. . .

Polarization conversion

Diamond phase plate system BL39XU

Stages and vacuum chamber of phase retarder

0.45-mm-thick (111) diamond plate

Switcher of phase

Selection of phase plate

Thickness (mm)	Index	Reflection	Energy (keV)	Transmittance (%)
0.34	(111)	111 Bragg	5~5.8	3~7
	(111)	220 Laue	5.8~7.5	7~41
0.45	(111)	220 Laue	6~9	5~53
0.73	(111)	220 Laue	8~12	22~65
2.7	(001)	220 Laue	11~16	13~47

Spatial coherence

We need:

- small source size ($\sigma_{\rm s}$) & long beamline (L)

 λL l_{coh} - 30 $\sigma_{_{s}}$

(depend on machine performance and facility design !)

- w/ speckle-free optics.

Front-end

(1) Vacuum chamber

(with ion pumps,..)

Pressure (10⁻⁷~10⁻⁵ Pa)

(2) Main beam shutter

(MBS)

•Water-cooled absorber

•Beam shutter

(3) Mask, XY-slit

Spatial power control

(4) Water-cooled Be windows

Protection of UHV

(5) Beam position monitor

e.g. SPring-8 BL19LXU front-end It reduces source power of 33 kW down to 500 W for downstream optics

Grazing incidence technique w/ GlidCop → 10 kW/m

Reduction of power at front-end

e.g. Radiation From standard x-ray undulator λ u=32 mm, N= 140, fundamental peak of 10 keV

Front-end eliminates the out-of-axis power spatially and reduce the power on the first optical element

Transport channel

e.g. BL14B2

Transport channel components

Exhaustion unit (ion-pump, TMP,..) Down stream shutter (W or Pb) Gamma stopper (Pb) Beryllium window Screen monitor

Shielding hutch @SPring-8

Optics hutch

contains optics and transport channel components introducing white radiation

Experimental hutch

contains experimental station equipments introducing monochromatic beam

- Panel Steel/ Lead/ steel sandwich structure
- •Lead thickness Depends on the radiation condition $(3 \sim 50 \text{ mm})$
- Module Panel, Door, Cable duct, Air inlet/exhaust duct,...
- Utility Compressed air, Chilled water, electric power

Other issues on beamline design

- Boundary condition

storage ring and tunnel, neighboring beamline,...

- Radiation safety for shielding hutch, shutter,..

Radiation shielding calculation (EGS4, STAC8,..)

- Control and interlock

Common scheme in the facility.

Connection with machine and safety control

- Others

Utilities: electricity, water, compressed air, air conditioning.

Environmental: vibration of floor, temperature of air,...

Cooperation with each specialist in the facility is crucial !

Example of x-ray beamline - SPring-8 case -

XAFS & single crystal diffraction

- Bending magnet
- Collimator mirror,
- + DCM,
- + refocusing mirror

Protein crystallography

High resolution inelastic scattering

- Undulator
- DCM + back-reflection monochromator & analyzer (w/ ~meV resolution)

55

200-m-long beamline

Bending magnetDCM

300-mm-wide beam at end-station

1-km-long beamline

UndulatorDCM + tandem mirror

Wide and spatially-coherent X-rays at 1-km end station

Summary

- Starting point of X-ray beamline design is shown here, w/ light source, monochromator, mirror,...
- It helps to figure out what we can obtain from the beamline.
- We will have to go into details of design refinement using; FEA (ANSYS), ray-tracing (SHADOW,...), shielding calculation,...
- Standardization of good components helps beamline design and saves the cost, man-power, and other resources.
- Ray-tracing -> wave simulation for "diffraction limited source and optics"

Thanks to:

H. Kitamura, T. Tanaka, S. Takahashi, K. Takeshita,

N. Nariyama, Y. Asano, H. Ohashi, T. Mochizuki,

M. Yabashi, H. Yamazaki, K. Tamasaku, A. Baron,

M. Suzuki, T. Uruga, T. Matsushita, T. Ohata,

Y. Furukawa, and T. Ishikawa

Thank you for your attention.